84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]劉朝輝,鄧葉龍,孔令俊,等.脈沖電磁場對骨髓間充質(zhì)干細胞成骨分化影響的研究進展[J].中醫(yī)正骨,2023,35(04):38-42.
點擊復(fù)制

脈沖電磁場對骨髓間充質(zhì)干細胞成骨分化影響的研究進展()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第35卷
期數(shù):
2023年04期
頁碼:
38-42
欄目:
綜述
出版日期:
2023-04-20

文章信息/Info

作者:
劉朝輝1鄧葉龍1孔令俊1高文婷2李興國1楊德龍1唐仲海1
(1.甘肅省中醫(yī)院,甘肅 蘭州 730050; 2.甘肅省人民醫(yī)院,甘肅 蘭州 730000)
關(guān)鍵詞:
電磁場 骨髓 間質(zhì)干細胞 細胞分化 骨生成 骨質(zhì)疏松 信號傳導(dǎo) 綜述
摘要:
骨質(zhì)疏松癥(osteoporosis,OP)是臨床常見病,脈沖電磁場(pulsed electromagnetic fields,PEMFs)是治療OP的新方法,其可以通過共振效應(yīng)促進成骨細胞的增殖和分化,從而發(fā)揮治療OP的作用。骨髓間充質(zhì)干細胞(bone mesenchymal stem cell,BMSC)是一種具有多向分化能力的干細胞,其對OP的預(yù)防和治療具有重要作用。本文概述了PEMFs和BMSC,就PEMFs對BMSC的作用、PEMFs促進BMSC成骨分化的相關(guān)信號通路進行了綜述。

參考文獻/References:

[1] KANIS J A,HARVEY N C,MCCLOSKEY E,et al.Algorithm for the management of patients at low,high and very high risk of osteoporotic fractures[J].Osteoporos Int,2020,31(1):1-12.
[2] ARCEO-MENDOZA R M,CAMACHO P M.Postmenopausal osteoporosis:latest guidelines[J].Endocrinol Metab Clin North Am,2021,50(2):167-178.
[3] IOLASCON G,MOERTTI A,TORO G,et al.Pharmacological therapy of osteoporosis:what's new?[J].Clin Interv Aging,2020,15:485-491.
[4] 鄧葉龍,孔令俊,劉朝輝,等.脈沖電磁場對骨代謝的分子細胞學(xué)作用機制研究進展[J].中國骨質(zhì)疏松雜志,2022,28(2):290-295.
[5] TONG J,SUN L,ZHU B,et al.Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients[J].Bioelectromagnetics,2017,38(7):541-549.
[6] 肖豪,劉靜,周君.脈沖電磁場治療絕經(jīng)后骨質(zhì)疏松癥的研究進展[J].中國組織工程研究,2022,26(8):1266-1271.
[7] FATHI E,AZARBAD S,FARAHZADI R,et al.Effect of rat bone marrow derived-mesenchymal stem cells on granulocyte differentiation of mononuclear cells as preclinical agent in cellbased therapy[J].Curr Gene Ther,2022,22(2):152-161.
[8] FU X,LIU G,HALIM A,et al.Mesenchymal stem cell migration and tissue repair[J].Cells,2019,8(8):784.
[9] ARTHUR A,GRONTHOS S.Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J].Int J Mol Sci,2020,21(24):9759.
[10] EHNERT S,SCHRÖTER S,ASPERA-WERZ R H,et al.Translational insights into extremely low frequency pulsed electromagnetic fields(ELF-PEMFs)for bone regeneration after trauma and orthopedic surgery[J].J Clin Med,2019,8(12):2028.
[11] DOMINICI M,LE BLANC K,MUELLER I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.T he international society for cellular therapy position statement[J].Cytotherapy,2006,8(4):315-317.
[12] WU S,YU Q,SUN Y,et al.Synergistic effect of a LPEMF and SPIONs on BMMSC proliferation,directional migration,and osteoblastogenesis[J].Am J Transl Res,2018,10(5):1431-1443.
[13] 趙敏,許建中,周強,等.脈沖電磁場促進人骨髓間充質(zhì)干細胞成骨的研究[J].中國矯形外科雜志,2004,12(6):38-42.
[14] SIMMONS J W Jr,MOONEY V,THACKER I.Pseudarthrosis after lumbar spine fusion:nonoperative salvage with pulsed electromagnetic fields[J].Am J Orthop(Belle Mead NJ),2004,33(1):27-30.
[15] JANSEN J H,VAN DER JAGT O P,PUNT B J,et al.Sti-mulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields:an in vitro study[J].BMC Musculoskelet Disord,2010,11:188.
[16] WANG T,HE C,YU X.Pro-inflammatory cytokines:new potential therapeutic targets for obesity-related bone disorders[J].Curr Drug Targets,2017,18(14):1664-1675.
[17] PARATE D,KADIR N D,CELIK C,et al.Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration[J].Stem Cell Res Ther,2020,11(1):46.
[18] LI J P,CHEN S,PENG H,et al.Pulsed electromagnetic fields protect the balance between adipogenesis and osteogenesis on steroid-induced osteonecrosis of femoral head at the pre-collapse stage in rats[J].Bioelectromagnetics,2014,35(3):170-180.
[19] SONG M Y,YU J Z,ZHAO D M,et al.The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation,differentiation,and mineralization[J].Cell Biochem Biophys,2014,69(1):47-54.
[20] INOUE N,OHNISHI I,CHEN D,et al.Effect of pulsed electromagnetic fields(PEMF)on late-phase osteotomy gap healing in a canine tibial model[J].J Orthop Res,2002,20(5):1106-1114.
[21] HARTIG M,JOOS U,WIESMANN H P.Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro[J].Eur Biophys J,2000,29(7):499-506.
[22] EHNERT S,VAN GRIENSVEN M,UNGER M,et al.Co-culture with human osteoblasts and exposure to extremely low frequency pulsed electromagnetic fields improve osteogenic differentiation of human adipose-derived mesenchymal stem cells[J].Int J Mol Sci,2018,19(4):994.
[23] KAVAND H,VAN LINTEL H,RENAUD P.Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca2+ on chondrogenic differentiation[J].J Tissue Eng Regen Med,2019,13(5):799-811.
[24] TONG J,SUN L,ZHU B,et al.Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients[J].Bioelectromagnetics,2017,38(7):541-549.
[25] WU S,YU Q,LAI A,et al.Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway[J].Biochem Biophys Res Commun,2018,503(2):715-721.
[26] ZHANG X,LIU X,PAN L,et al.Magnetic fields at extremely low-frequency(50 Hz,0.8 mT)can induce the uptake of intracellular calcium levels in osteoblasts[J].Biochem Biophys Res Commun,2010,396(3):662-666.
[27] WU L,ZHANG G,GUO C,et al.Intracellular Ca2+signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells[J].Biochem Biophys Res Commun,2020,527(1):200-206.
[28] SHIN M K,KIM M K,BAE Y S,et al.A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells[J].Cell Signal,2008,20(4):613-624.
[29] WU S,YU Q,SUN Y,et al.Synergistic effect of a LPEMF and SPIONs on BMMSC proliferation,directional migration,and osteoblastogenesis[J].Am J Transl Res,2018,10(5):1431-1443.
[30] LUO F,HOU T,ZHANG Z,et al.Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells[J].Orthopedics,2012,35(4):e526-e531.
[31] ZHOU Y,WU Y,JIANG X,et al.The Effect of quercetin on the osteogenesic differentiation and angiogenic factor expre-ssion of bone marrow-derived mesenchymal stem cells[J/OL].PLoS One,2015,10(6):e0129605[2022-03-08].https://pubmed.ncbi.nlm.nih.gov/26053266/.
[32] KAIVOSOJA E,SARIOLA V,CHEN Y,et al.The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells[J].J Tissue Eng Regen Med,2015,9(1):31-40.
[33] LU T,HUANG Y X,ZHANG C,et al.Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells[J].Genet Mol Res,2015,14(3):11535-11542.
[34] MARTINI F,PELLATI A,MAZZONI E,et al.Bone morphogenetic protein-2 signaling in the osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields[J].Int J Mol Sci,2020,21(6):2104.
[35] GHARIBI B,ABRAHAM A A,HAM J,et al.Adenosine receptor subtype expression and activation influence the di-fferentiation of mesenchymal stem cells to osteoblasts and adipocytes[J].J Bone Miner Res,2011,26(9):2112-2124.
[36] BAGHERI L,PELLATI A,RIZZO P,et al.Notch pathway is active during osteogenic differentiation of human bone ma-rrow mesenchymal stem cells induced by pulsed electromagnetic fields[J].J Tissue Eng Regen Med,2018,12(2):304-315.
[37] SIDDAPPA R,MARTENS A,DOORN J,et al.CAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo[J].Proc Natl Acad Sci U S A,2008,105(20):7281-7286.
[38] YONG Y,MING Z D,FENG L,et al.Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways[J].J Tissue Eng Regen Med,2016,10(10):E537-E545.
[39] YUE J,LPEZ J M.Understanding MAPK signaling pathways in apoptosis[J].Int J Mol Sci,2020,21(7):2346.
[40] LEE K S,HONG S H,BAE S C.Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein[J].Oncogene,2002,21(47):7156-7163.
[41] 方清清,李志忠,周建,等.信號分子p38參與低頻脈沖電磁場促進成骨細胞礦化成熟的實驗研究[J].中國修復(fù)重建外科雜志,2016,30(10):1238-1243.
[42] FERRONI L,GARDIN C,DOLKART O,et al.Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions:an in-vitro study[J].Sci Rep,2018,8(1):5108.
[43] MIYAMOTO H,SAWAJI Y,IWAKI T,et al.Intermittent pulsed electromagnetic field stimulation activates the mTOR pathway and stimulates the proliferation of osteoblast-like cells[J].Bioelectromagnetics,2019,40(6):412-421.
[44] SCHWARTZ Z,SIMON B J,DURAN M A,et al.Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells[J].J Orthop Res,2008,26(9):1250-1245.
[45] 姜朝陽,謝興文,徐世紅,等.骨髓間充質(zhì)干細胞成骨分化相關(guān)信號通路[J].中華骨質(zhì)疏松和骨礦鹽疾病雜志,2020,13(5):473-478.
[46] SHAO X,YANG Y,TAN Z,et al.Amelioration of bone fragility by pulsed electromagnetic fields in type 2 diabetic KK-Ay mice involving Wnt/β-catenin signaling[J].Am J Physiol Endocrinol Metab,2021,320(5):E951-E966.
[47] 周予婧,王樸,陳紅英,等.脈沖電磁場對大鼠骨髓間充質(zhì)干細胞增殖、成骨分化和Wnt/β-catenin信號通路的影響[J].四川大學(xué)學(xué)報(醫(yī)學(xué)版),2015,46(3):347-353.
(收稿日期:2022-03-09 本文編輯:郭毅曼)

相似文獻/References:

[1]周勇,徐祖健,柴天朋,等.非創(chuàng)傷性股骨頭壞死骨髓水腫與磁共振分期的關(guān)系及骨髓水腫發(fā)生機制的初步研究[J].中醫(yī)正骨,2016,28(08):8.
 ZHOU Yong,XU Zujian,CHAI Tianpeng,et al.A pilot study on relationship between bone marrow edema and magnetic resonance staging and pathogenesy of bone marrow edema in patients with non-traumatic osteonecrosis of femoral head[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(04):8.
[2]吳剛,童培建.補腎活血湯含藥血清干預(yù)體外培養(yǎng)大鼠骨髓間充質(zhì)干細胞成軟骨分化及補腎活血湯聯(lián)合骨髓間充質(zhì)干細胞治療大鼠膝骨關(guān)節(jié)炎的實驗研究[J].中醫(yī)正骨,2018,30(01):6.
 WU Gang,TONG Peijian.Impact of Bushen Huoxue Tang(補腎活血湯)medicated serum on chondrogenic differentiation?of rat’s bone marrow derived mesenchymal stem cells cultured in vitro[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(04):6.
[3]劉晨,李興勇,姚興璋,等.絕經(jīng)后骨質(zhì)疏松癥的流行病學(xué)概況及發(fā)病機制研究進展[J].中醫(yī)正骨,2018,30(03):52.
[4]陸吳超,錢偉宏,姚志宏,等.補腎、活血中藥及補腎活血復(fù)方對骨髓間充質(zhì)干細胞增殖、定向遷移及成骨分化的影響及作用機制的研究進展[J].中醫(yī)正骨,2018,30(07):36.
[5]張瑞萍,邱相君,蘇兵,等.頭蛋白shRNA和骨形態(tài)發(fā)生蛋白2的協(xié)同作用對骨髓間充質(zhì)干細胞成骨能力的影響[J].中醫(yī)正骨,2019,31(09):1.
 ZHANG Ruiping,QIU Xiangjun,SU Bing,et al.The synergistic effects of Noggin shRNA and bone morphogenetic protein 2 on osteogenic ability of bone marrow mesenchymal stem cells[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2019,31(04):1.
[6]孫曉輝,趙斌,劉洋,等.負載microRNA-27b-骨髓間充質(zhì)干細胞來源外泌體的軟骨細胞-聚乳酸羥基乙酸共聚物骨軟骨復(fù)合體移植治療軟骨缺損的實驗研究[J].中醫(yī)正骨,2021,33(01):1.
 SUN Xiaohui,ZHAO Bin,LIU Yang,et al.MicroRNA-27b-bone marrow mesenchymal stem cell derived exosomes-laden chondrocytes-poly(lactic-co-glycolic acid)osteochondral complex transplantation for treatment of osteochondral defects:an experimental study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2021,33(04):1.
[7]王玉杭,王煦程,王迪,等.基于“髓系骨病”理論探索Osterix陽性骨髓間充質(zhì)干細胞維持骨穩(wěn)態(tài)的作用[J].中醫(yī)正骨,2023,35(01):10.
 WANG Yuhang,WANG Xucheng,WANG Di,et al.Effect of Osterix-expressing bone marrow mesenchymal stem cells in maintaining bone homeostasis based on the“myeloid bone disease”theory[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2023,35(04):10.
[8]楊虎,鄭宇,王通,等.低氧誘導(dǎo)因子-1α促進骨折早期愈合的機制[J].中醫(yī)正骨,2024,36(06):52.

備注/Memo

備注/Memo:
通訊作者:鄧葉龍 E-mail:[email protected]
更新日期/Last Update: 1900-01-01