84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]張厚建,張維新,童培建.間充質(zhì)干細胞來源外泌體治療骨關(guān)節(jié)炎和軟骨損傷的研究進展[J].中醫(yī)正骨,2020,32(06):49-58.
點擊復(fù)制

間充質(zhì)干細胞來源外泌體治療骨關(guān)節(jié)炎和軟骨損傷的研究進展()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第32卷
期數(shù):
2020年06期
頁碼:
49-58
欄目:
綜 述
出版日期:
2020-06-20

文章信息/Info

作者:
張厚建1張維新1童培建2
(1.浙江中醫(yī)藥大學第一臨床醫(yī)學院,浙江杭州310053; 2.浙江省中醫(yī)院,浙江杭州310006)
關(guān)鍵詞:
骨關(guān)節(jié)炎 軟骨 間質(zhì)干細胞 外泌體 綜述
摘要:
骨關(guān)節(jié)炎是臨床常見病,以關(guān)節(jié)軟骨損傷、軟骨下骨硬化及滑膜炎癥等為特征,可導致患肢疼痛、畸形和功能障礙。外泌體是細胞間通訊的主要載體,在細胞間轉(zhuǎn)運具有生物活性的脂質(zhì)、核酸及蛋白質(zhì),從而改變受體細胞的生物學功能。間充質(zhì)干細胞來源外泌體具有抗炎、免疫調(diào)節(jié)及促進組織修復(fù)和再生等作用,是治療骨關(guān)節(jié)炎和軟骨損傷的新靶點。本文對間充質(zhì)干細胞及外泌體進行了概述,并對間充質(zhì)干細胞來源外泌體在骨關(guān)節(jié)炎和軟骨損傷治療中的應(yīng)用及其作用機制進行了綜述。

參考文獻/References:

[1]MURRAY C J,VOS T,LOZANO R,et al.Disability-adjusted life years(DALYs)for 291 diseases and injuries in 21 regions,1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J].Lancet,2012,380(9859):2197-2223.
[2] FELLOWS C R,MATTA C,MOBASHERI A.Applying proteomics to study crosstalk at the cartilage-subchondral bone interface in osteoarthritis:current status and future directions[J].EBioMedicine,2016,11:2-4.
[3]VINATIER C,BOUFFI C,MERCERON C,et al.Cartilage tissue engineering:towards a biomaterial-assisted mesenchymal stem cell therapy[J].Curr Stem Cell Res Ther,2009,4(4):318-329.
[4]IM G I.Regeneration of articular cartilage using adipose stem cells[J].J Biomed Mater Res A,2016,104(7):1830-1844.
[5]IM G I.Clinical use of stem cells in orthopaedics[J].Eur Cell Mater,2017,33:183-196.
[6]TOH W S,LAI R C,HUI J H P,et al.MSC exosome as a cell-free MSC therapy for cartilage regeneration:Implications for osteoarthritis treatment[J].Semin Cell Dev Biol,2017,67:56-64.
[7]MAKRIS E A,GOMOLL A H,MALIZOS K N,et al.Repair and tissue engineering techniques for articular cartilage[J].Nat Rev Rheumatol,2015,11(1):21-34.
[8]GAO L,GOEBEL L,ORTH P,et al.Subchondral drilling for articular cartilage repair:a systematic review of translational research[J].Dis Model Mech,2018,11(6):dmm034280.
[9]MIYAKI S,LOTZ M K.Extracellular vesicles in cartilage homeostasis and osteoarthritis[J].Curr Opin Rheumatol,2018,30(1):129-135.
[10]FRIEDENSTEIN A J,GORSKAJA J F,KULAGINA N N.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Exp Hematol,1976,4(5):267-274.
[11]CRISAN M,YAP S,CASTEILLA L,et al.A perivascular origin for mesenchymal stem cells in multiple human organs[J].Cell Stem Cell,2008,3(3):301-313.
[12]ZUK P A,ZHU M,ASHJIAN P,et al.Human adipose tissue is a source of multipotent stem cells[J].Mol Biol Cell,2003,13(12):4279-4295.
[13]HUANG L,NIU C,WILLARD B,et al.Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord:implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells[J].Stem Cell Res Ther,2015,6(1):77.
[14]DE BARI C,DELL’ACCIO F,VANDENABEELE F,et al.Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane[J].J Cell Biol,2003,160(6):909-918.
[15]PITTENGER M F,MACKAY A M,BECK S C,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
[16]LEE W Y,WANG B.Cartilage repair by mesenchymal stem cells:Clinical trial update and perspectives[J].J Orthop Translat,2017,9:76-88.
[17]MENDICINO M,BAILEY A M,WONNACOTT K,et al.MSC-based product characterization for clinical trials:an FDA perspective[J].Cell Stem Cell,2014,14(2):141-145.
[18]BASTOS R,MATHIAS M,ANDRADE R,et al.Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis[J].Knee Surg Sports Traumatol Arthrosc,2018,26(11):3342-3350.
[19]VEGA A,MARTIN-FERRERO M A,DEL C F,et al.Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells:a randomized controlled trial[J].Transplantation,2015,99(8):1681-1690.
[20]UCCELLI A,DE ROSBO N K.The immunomodulatory function of mesenchymal stem cells:mode of action and pathways[J].Ann N Y Acad Sci,2015,1351:114-126.
[21]ROELOFS A J,ROCKE J P,DE BARI C.Cell-based approaches to joint surface repair:a research perspective[J].Osteoarthritis Cartilage,2013,21(7):892-900.
[22]MAUMUS M,GURIT D,TOUPET K,et al.Mesenchymal stem cell-based therapies in regenerative medicine:applications in rheumatology[J].Stem Cell Res Ther,2011,2(2):14.
[23]AL-NAJAR M,KHALIL H,AL-AJLOUNI J,et al.Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe:a phase III study[J].J Orthop Surg Res,2017,12(1):190.
[24]LAMO-ESPINOSA J M,MORA G,BLANCO J F,et al.Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis:long-term follow up of a multicenter randomized controlled clinical trial(phase III)[J].J Transl Med,2018,16(1):213.
[25]LOPA S,COLOMBINI A,MORETTI M,et al.Injective mesenchymal stem cell-based treatments for knee osteoarthritis:from mechanisms of action to current clinical evidences[J].Knee Surg Sports Traumatol Arthrosc,2019,27(6):2003-2020.
[26]ROFFI A,NAKAMURA N,SANCHEZ M,et al.Injectable systems for intra-articular delivery of mesenchymal stromal cells for cartilage treatment:a systematic review of preclinical and clinical evidence[J].Int J Mol Sci,2018,19(11):3322.
[27]JEVOTOVSKY D S,ALFONSO A R,EINHORN T A,et al.Osteoarthritis and stem cell therapy in humans:a systematic review[J].Osteoarthritis Cartilage,2018,26(6):711-729.
[28]SIDDAPPA R,LICHT R,VAN BLITTERSWIJK C,et al.Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering[J].J Orthop Res,2007,25(8):1029-1041.
[29]MUSIC E,FUTREGA K,DORAN M R.Sheep as a model for evaluating mesenchymal stemstromal cell(MSC)-based chondral defect repair[J].Osteoarthritis Cartilage,2018,26(6):730-740.
中醫(yī)正骨2020年6月第32卷第6期J Trad Chin Orthop Trauma,2020,Vol.32,No.6(總455)(總456)中醫(yī)正骨2020年6月第32卷第6期J Trad Chin Orthop Trauma,2020,Vol.32,No.6[30]TOH W S,FOLDAGER C B,PEI M,et al.Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration[J].Stem Cell Rev Rep,2014,10(5):686-696.
[31]MEIRELLES LDA S,FONTES A M,COVAS D T,et al.Mechanisms involved in the therapeutic properties of mesenchymal stem cells[J].Cytokine Growth Factor Rev,2009,20(56):419-427.
[32]HOFER H R,TUAN R S.Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies[J].Stem Cell Res Ther,2016,7(1):131.
[33]LIANG X,DING Y,ZHANG Y,et al.Paracrine mechanisms of mesenchymal stem cell-based therapy:current status and perspectives[J].Cell Transplant,2014,23(9):1045-1059.
[34]WU L,LEIJTEN J C,GEORGI N,et al.Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation[J].Tissue Eng Part A,2011,17(910):1425-1436.
[35]LAI J H,KAJIYAMA G,SMITH R L,et al.Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels[J].Sci Rep,2013,3:3553.
[36]YEO R W Y,LIM S K.Exosomes and their therapeutic applications[J].World Scientific,2015:477-501.
[37]ZHANG S,CHUAH S J,LAI R C,et al.MSC exosomes mediate cartilage repair by enhancing proliferation,attenuating apoptosis and modulating immune reactivity[J].Biomaterials,2018,156:16-27.
[38]ZHANG S,CHU W C,LAI R C,et al.Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J].Osteoarthritis Cartilage,2016,24(12):2135-2140.
[39]BJ?RGE I M,KIM S Y,MANO J F,et al.Extracellular vesicles,exosomes and shedding vesicles in regenerative medicine-a new paradigm for tissue repair[J].Biomater Sci,2017,6(1):60-78.
[40]KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.
[41]VALADI H,EKSTR? K,BOSSIOS A,et al.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659.
[42]CHAPUT N,FLAMENT C,VIAUD S,et al.Dendritic cell derived-exosomes:biology and clinical implementations[J].J Leukoc Biol,2006,80(3):471-478.
[43]LO CICERO A,STAHL P D,RAPOSO G.Extracellular vesicles shuffling intercellular messages:for good or for bad[J].Curr Opin Cell Biol,2015,35:69-77.
[44]COSENZA S,RUIZ M,TOUPET K,et al.Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis[J].Sci Rep,2017,7(1):16214.
[45]MAO G,ZHANG Z,HU S,et al.Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J].Stem Cell Res Ther,2018,9(1):247.
[46]TAO S C,YUAN T,ZHANG Y L,et al.Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J].Theranostics,2017,7(1):180-195.
[47]VONK L A,VAN DOOREMALEN S F J,LIV N,et al.Mesenchymal stromalstem cell-derived extracellular vesicles promote human cartilage regeneration in vitro[J].Theranostics,2018,8(4):906-920.
[48]WANG Y,YU D,LIU Z,et al.Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix[J].Stem Cell Res Ther,2017,8(1):189.
[49]ZHU Y,WANG Y,ZHAO B,et al.Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis[J].Stem Cell Res Ther,2017,8(1):64.
[50]COSENZA S,TOUPET K,MAUMUS M,et al.Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis[J].Theranostics,2018,8(5):1399-1410.
[51]HEADLAND S E,JONES H R,NORLING L V,et al.Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis[J].Sci Transl Med,2015,7(315):315ra190.
[52]TOFI?-VIAN M,GUILLéN M I,PéREZ DEL CAZ M D,et al.Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes[J].Cell Physiol Biochem,2018,47(1):11-25.
[53]LIU X,YANG Y,LI Y,et al.Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration[J].Nanoscale,2017,9(13):4430-4438.
[54]LI J J,HOSSEINI-BEHESHTI E,GRAU G E,et al.Stem cell-derived extracellular vesicles for treating joint injury and osteoarthritis[J].Nanomaterials(Basel),2019,9(2):261.
[55]MIANEHSAZ E,MIRZAEI H R,MAHJOUBIN-TEHRAN M,et al.Mesenchymal stem cell-derived exosomes:a new therapeutic approach to osteoarthritis?[J].Stem Cell Res Ther,2019,10(1):340.
[56]MENDT M,KAMERKAR S,SUGIMOTO H,et al.Generation and testing of clinical-grade exosomes for pancreatic cancer[J].JCI Insight,2018,3(8):e99263.
[57]MUNAGALA R,AQIL F,JEYABALAN J,et al.Bovine milk-derived exosomes for drug delivery[J].Cancer Lett,2016,371(1):48-61.
[58]HASLAUER C M,ELSAID K A,FLEMING B C,et al.Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury[J].Osteoarthritis Cartilage,2013,21(12):1950-1957.
[59]HEARD B J,BARTON K I,CHUNG M,et al.Single intra-articular dexamethasone injection immediately post-surgery in a rabbit model mitigates early inflammatory responses and post-traumatic osteoarthritis-like alterations[J].J Orthop Res,2015,33(12):1826-1834.
[60]BEIER F,LOESER R F.Biology and pathology of Rho GTPase,PI-3 kinase-Akt,and MAP kinase signaling pathways in chondrocytes[J].J Cell Biochem,2010,110(3):573-580.
[61]MARTINI M,DE SANTIS M C,BRACCINI L,et al.PI3KAKT signaling pathway and cancer:an updated review[J].Ann Med,2014,46(6):372-383.
[62]MA D,KOU X,JIN J,et al.Hydrostatic compress force enhances the viability and decreases the apoptosis of condylar chondrocytes through Integrin-FAK-ERKPI3K pathway[J].Int J Mol Sci,2016,17(11):1847.
[63]LAI R C,TAN S S,TEH B J,et al.Proteolytic potential of the MSC exosome proteome:implications for an exosome-mediated delivery of therapeutic proteasome[J].Int J Proteomics,2012,2012:971907.
[64]QI H,LIU D P,XIAO D W,et al.Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38,ERK,and Akt pathways[J].In Vitro Cell Dev Biol Anim,2019,55(3):203-210.
[65]LOGAN C Y,NUSSE R.The Wnt signaling pathway in development and disease[J].Annu Rev Cell Dev Biol,2004,20:781-810.
[66]XIANG C,YANG K,LIANG Z,et al.Sphingosine-1-phosphate mediates the therapeutic effects of bone marrow mesenchymal stem cell-derived microvesicles on articular cartilage defect[J].Transl Res,2018,193:42-53.
[67]LIU Y,LIN L,ZOU R,et al.MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1miR-206GIT1 axis in osteoarthritis[J].Cell Cycle,2018,17(21-22):2411-2422.
[68]WU J,KUANG L,CHEN C,et al.miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J].Biomaterials,2019,206:87-100.
[69]LIU H,LI Z,CAO Y,et al.Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration:a possible pathway for osteoarthritis pathology at the subcellular level[J].Mol Med Rep,2019,20(4):3308-3316.
[70]LI H,WANG D,YUAN Y,et al.New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis[J].Arthritis Res Ther,2017,19(1):248.
[71]SAITO T,TANAKA S.Molecular mechanisms underlying osteoarthritis development:Notch and NF-kappaB[J].Arthritis Res Ther,2017,19(1):94.
[72]MARCU K B,OTERO M,OLIVOTTO E,et al.NF-kappaB signaling:multiple angles to target OA[J].Curr Drug Targets,2010,11(5):599-613.
[73]OGANDO J,TARDáGUILA M,DíAZ-ALDERETE A,et al.Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients[J].Sci Rep,2016,6:20223.
[74]MARIANI E,PULSATELLI L,FACCHINI A.Signaling pathways in cartilage repair[J].Int J Mol Sci,2014,15(5):8667-8698.
[75]BI W,DENG J M,ZHANG Z,et al.Sox9 is required for cartilage formation[J].Nat Genet,1999,22(1):85-89.
[76]YANG X,CHEN L,XU X,et al.TGF-betaSmad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J].J Cell Biol,2001,153(1):35-46.
中醫(yī)正骨2020年6月第32卷第6期J Trad Chin Orthop Trauma,2020,Vol.32,No.6(總457)(總458)中醫(yī)正骨2020年6月第32卷第6期J Trad Chin Orthop Trauma,2020,Vol.32,No.6[77]LI T F,DAROWISH M,ZUSCIK M J,et al.Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation[J].J Bone Miner Res,2006,21(1):4-16.
[78]HELLINGMAN C A,DAVIDSON E N,KOEVOET W,et al.Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells:inhibition of Smad158P prevents terminal differentiation and calcification[J].Tissue Eng Part A,2011,17(78):1157-1167.
[79]VAN DER KRAAN P M,BLANEY DAVIDSON E N,VAN DEN BERG W B.Bone morphogenetic proteins and articular cartilage:to serve and protect or a wolf in sheep clothing’s?[J].Osteoarthritis Cartilage,2010,18(6):735-741.
[80]NIADA S,GIANNASI C,GOMARASCA M,et al.Adipose-derived stromal cell secretome reduces TNFalpha-induced hypertrophy and catabolic markers in primary human articular chondrocytes[J].Stem Cell Res,2019,38:101463.
[81]SUN H,HU S,ZHANG Z,et al.Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells[J].J Cell Biochem,2019,120(1):171-181.
[82]LIU Y,ZOU R,WANG Z,et al.Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis[J].Biochem J,2018,475(22):3629-3638.
[83]MAO G,HU S,ZHANG Z,et al.Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 28[J].J Cell Mol Med,2018,22(11):5354-5366.
[84]RAGNI E,PERUCCA O C,DE LUCA P,et al.Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes[J].Stem Cell Res Ther,2019,10(1):109.
[85]LOESER R F,COLLINS J A,DIEKMAN B O.Ageing and the pathogenesis of osteoarthritis[J].Nat Rev Rheumatol,2016,12(7):412-420.
[86]WANG Y,ZHAO X,LOTZ M,et al.Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J].Arthritis Rheumatol,2015,67(8):2141-2153.
[87]RUIZ-ROMERO C,CALAMIA V,MATEOS J,et al.Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics:a decrease in mitochondrial superoxide dismutase points to a redox imbalance[J].Mol Cell Proteomics,2009,8(1):172-189.
[88]VAAMONDE-GARCIA C,RIVEIRO-NAVEIRA R R,VALCáRCEL-ARES M N,et al.Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes[J].Arthritis Rheum,2012,64(9):2927-2936.
[89]TERKELTAUB R,JOHNSON K,MURPHY A,et al.Invited review:the mitochondrion in osteoarthritis[J].Mitochondrion,2002,1(4):301-319.
[90]LOESER R F.Aging and osteoarthritis[J].Curr Opin Rheumatol,2011,23(5):492-496.
[91]LAI R C,YEO R W,TAN K H,et al.Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation[J].Regen Med,2013,8(2):197-209.
[92]ARSLAN F,LAI R C,SMEETS M B,et al.Mesenchymal stem cell-derived exosomes increase ATP levels,decrease oxidative stress and activate PI3KAkt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemiareperfusion injury[J].Stem Cell Res,2013,10(3):301-312.
[93]CHEN P,ZHENG L,WANG Y,et al.Desktop-stereolithography 3D printing of a radially oriented extracellular matrixmesenchymal stem cell exosome bioink for osteochondral defect regeneration[J].Theranostics,2019,9(9):2439-2459.
[94]SANSONE P,SAVINI C,KURELAC I,et al.Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer[J].Proc Natl Acad Sci U S A,2017,114(43):E9066-E9075.
[95]QI H,LIU D P,XIAO D W,et al.Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38,ERK,and Akt pathways[J].In Vitro Cell Dev Biol Anim,2019,55(3):203-210.
[96]GOLDRING M B,OTERO M,PLUMB D A,et al.Roles of inflammatory and anabolic cytokines in cartilage metabolism:signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis[J].Eur Cell Mater,2011,21:202-220.
[97]MANFERDINI C,PAOLELLA F,GABUSI E,et al.From osteoarthritic synovium to synovial-derived cells characterization:synovial macrophages are key effector cells[J].Arthritis Res Ther,2016,18:83.
[98]VAN LENT P L,GREVERS L,BLOM A B,et al.Myeloid-related proteins S100A8S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis[J].Ann Rheum Dis,2008,67(12):1750-1758.
[99]LEWIS J S Jr,FURMAN B D,ZEITLER E,et al.Genetic and cellular evidence of decreased inflammation associated with reduced incidence of posttraumatic arthritis in MRLMpJ mice[J].Arthritis Rheum,2013,65(3):660-670.
[100]BONDESON J,WAINWRIGHT S D,LAUDER S,et al.The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases,matrix metalloproteinases,and other destructive and inflammatory responses in osteoarthritis[J].Arthritis Res Ther,2006,8(6):R187.
[101]BONDESON J,BLOM A B,WAINWRIGHT S,et al.The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis[J].Arthritis Rheum,2010,62(3):647-657.
[102]XIE J,HUANG Z,YU X,et al.Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee[J].Cytokine Growth Factor Rev,2019,46:36-44.
[103]DAS A,SINHA M,DATTA S,et al.Monocyte and macrophage plasticity in tissue repair and regeneration[J].Am J Pathol,2015,185(10):2596-2606.
[104]UTOMO L,VAN OSCH G J,BAYON Y,et al.Guiding synovial inflammation by macrophage phenotype modulation:an in vitro study towards a therapy for osteoarthritis[J].Osteoarthritis Cartilage,2016,24(9):1629-1638.
[105]SPILLER K L,ANFANG R R,SPILLER K J,et al.The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J].Biomaterials,2014,35(15):4477-4488.
[106]LO SICCO C,REVERBERI D,BALBI C,et al.Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects:endorsement of macrophage polarization[J].Stem Cells Transl Med,2017,6(3):1018-1028.
[107]WU X,WANG Y,XIAO Y,et al.Extracellular vesicles:potential role in osteoarthritis regenerative medicine[J].J Orthop Translat,2019,21:73-80.
[108]CHEN T S,LAI R C,LEE M M,et al.Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs[J].Nucleic Acids Res,2010,38(1):215-224.
[109]GOLDIE B J,DUN M D,LIN M,et al.Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons[J].Nucleic Acids Res,2014,42(14):9195-9208.
[110]CARTHEW R W,SONTHEIMER E J.Origins and Mechanisms of miRNAs and siRNAs[J].Cell,2009,136(4):642-655.
[111]LE LT,SWINGLER T E,CLARK I M.Review:the role of microRNAs in osteoarthritis and chondrogenesis[J].Arthritis Rheum,2013,65(8):1963-1974.
[112]MENG F,ZHANG Z,CHEN W,et al.MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses[J].Osteoarthritis Cartilage,2016,24(5):932-941.
[113]HOU C,ZHANG Z,ZHANG Z,et al.Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells[J].Mol Med Rep,2015,12(4):4877-4886.
[114]MIYAKI S,SATO T,INOUE A,et al.MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J].Genes Dev,2010,24(11):1173-1185.
[115]TOFI?-VIAN M,GUILLéN M I,PéREZ DEL CAZ M D,et al.Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts[J].Oxid Med Cell Longev,2017,2017:7197598.

相似文獻/References:

[1]孟維娜,明立功,王新德,等.關(guān)節(jié)鏡下清理聯(lián)合腓骨近1/3段截骨治療膝骨關(guān)節(jié)炎[J].中醫(yī)正骨,2015,27(11):40.
[2]明立功,孟維娜,王新德,等.腓骨近端截骨治療內(nèi)側(cè)間室膝骨關(guān)節(jié)炎的近期療效觀察[J].中醫(yī)正骨,2015,27(10):25.
[3]張杰,王人彥,張玉柱.膝骨關(guān)節(jié)炎的治療進展[J].中醫(yī)正骨,2015,27(10):68.
[4]梁朝,蔡靜怡,閆立,等.針刀療法改善膝骨關(guān)節(jié)炎早期疼痛癥狀的療效評價[J].中醫(yī)正骨,2015,27(09):9.
 LIANG Zhao,CAI Jingyi,YAN Li,et al.Evaluation of the curative effect of needle-knife therapy for relieving knee pain in patients with early knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(06):9.
[5]王建武,黨建軍,李強,等.四聯(lián)療法治療膝骨關(guān)節(jié)炎[J].中醫(yī)正骨,2015,27(08):44.
[6]劉紅娟,郭會利,郭樹農(nóng).云克聯(lián)合中藥治療膝骨關(guān)節(jié)炎的護理[J].中醫(yī)正骨,2015,27(08):75.
[7]陳衛(wèi)衡.探索建立系統(tǒng)的膝骨關(guān)節(jié)炎中醫(yī)臨床科研范式 和理論體系[J].中醫(yī)正骨,2015,27(07):1.
[8]鄭春松,葉蕻芝,李西海,等.透骨消痛膠囊中補腎柔肝藥和活血祛風藥治療 骨關(guān)節(jié)炎作用方式的計算機模擬比較[J].中醫(yī)正骨,2015,27(07):6.
 ZHENG Chunsong,YE Hongzhi,LI Xihai,et al.Comparison of the mode of action of Bushen Rougan(補腎柔肝)drugs versus Huoxue Qufeng(活血祛風)drugs contained in Tougu Xiaotong Jiaonang(透骨消痛膠囊)for the treatment of osteoarthritis:A computer simulation study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(06):6.
[9]帥波,沈霖,楊艷萍,等.加味青娥丸治療膝骨關(guān)節(jié)炎的作用機制研究[J].中醫(yī)正骨,2015,27(07):15.
 SHUAI Bo,SHEN Lin,YANG Yanping,et al.Study on the mechanism of action of Jiawei Qing'e Wan(加味青娥丸)for the treatment of knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(06):15.
[10]梅其杰,袁長深,段戡,等.壯藥骨痹方燙熨聯(lián)合運動療法治療膝骨關(guān)節(jié)炎的臨床研究[J].中醫(yī)正骨,2015,27(07):27.
 MEI Qijie,YUAN Changshen,DUAN Kan,et al.Clinical study of the curative effect of hot compressing and rubbing with packet of Gubi Fang(骨痹方)combined with exercise therapy in the treatment of knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(06):27.
[11]王文波,董建文,楊振國,等.加味陽和湯對早期膝骨關(guān)節(jié)炎兔關(guān)節(jié)軟骨的影響[J].中醫(yī)正骨,2015,27(01):1.
 WANG Wenbo,DONG Jianwen,YANG Zhenguo,et al.Effect of Jiawei Yanghe Tang(加味陽和湯)on articular cartilage in rabbits with early knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(06):1.
[12]陳旭,余進偉,趙運亮,等.膝關(guān)節(jié)關(guān)節(jié)液和血清中骨鈣素、基質(zhì)金屬蛋白酶1 及胰島素樣生長因子Ⅰ含量與軟骨損傷關(guān)系的 初步研究[J].中醫(yī)正骨,2016,28(02):20.
 CHEN Xu,YU Jinwei,ZHAO Yunliang,et al.A pilot study on the relationship between knee cartilage injury and contents of bone gla protein,matrix metalloproteinase 1 and insulin-like growth factorⅠin knee synovial fluid and serum[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(06):20.
[13]張增喬,馮偉,盧遠堅,等.軟骨和軟骨下骨的生物力學相互作用對骨關(guān)節(jié)炎影響的研究 進展[J].中醫(yī)正骨,2017,29(05):23.
[14]葉錦霞,付長龍,林潔,等.透骨消痛膠囊對毒胡蘿卜素誘導的內(nèi)質(zhì)網(wǎng)應(yīng)激PEKR信號通路介導的大鼠體外培養(yǎng)關(guān)節(jié)軟骨細胞凋亡的影響[J].中醫(yī)正骨,2017,29(06):1.
 YE Jinxia,FU Changlong,LIN Jie,et al.Effect of Tougu Xiaotong Jiaonang(透骨消痛膠囊)on apoptosis mediated by endoplasmic reticulum stress(PEKR signaling pathway)and induced by thapsigargin in rat's articular chondrocytes cultured in vitro[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(06):1.
[15]凌曉宇,周康,姚黎佳,等.血小板裂解液對膝骨關(guān)節(jié)炎模型大鼠疼痛和軟骨損傷的影響及作用機制研究[J].中醫(yī)正骨,2017,29(11):8.
 LING Xiaoyu,ZHOU Kang,YAO Lijia,et al.Effect of platelet lysate on pain and cartilage injury in knee osteoarthritis rat models and its mechanism of action:an experimental study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(06):8.
[16]吳剛,童培建.補腎活血湯含藥血清干預(yù)體外培養(yǎng)大鼠骨髓間充質(zhì)干細胞成軟骨分化及補腎活血湯聯(lián)合骨髓間充質(zhì)干細胞治療大鼠膝骨關(guān)節(jié)炎的實驗研究[J].中醫(yī)正骨,2018,30(01):6.
 WU Gang,TONG Peijian.Impact of Bushen Huoxue Tang(補腎活血湯)medicated serum on chondrogenic differentiation?of rat’s bone marrow derived mesenchymal stem cells cultured in vitro[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(06):6.
[17]高文香,王明君,李曉峰,等.關(guān)節(jié)鏡下微骨折術(shù)聯(lián)合富血小板血漿與纖維蛋白凝膠覆蓋微骨折創(chuàng)面治療膝骨關(guān)節(jié)炎軟骨退變?nèi)睋p[J].中醫(yī)正骨,2019,31(11):21.
 GAO Wenxiang,WANG Mingjun,LI Xiaofeng,et al.Arthroscopic microfracture surgery combined with microfractured wound surface coverage with platelet rich plasma and fibrin gels for treatment of degenerative cartilage defects in patients with knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2019,31(06):21.
[18]馬瀟苒,馬信龍,馬劍雄.機械負荷對關(guān)節(jié)軟骨代謝與軟骨下骨代謝的影響[J].中醫(yī)正骨,2022,34(05):53.
[19]陳瑞楠,陳國茜,劉迅,等.軟骨和軟骨下骨與膝骨關(guān)節(jié)炎關(guān)系的研究進展[J].中醫(yī)正骨,2023,35(03):55.
[20]伏玉龍,郭珈宜,李峰,等.間充質(zhì)干細胞來源外泌體修復(fù)膝骨關(guān)節(jié)炎軟骨損傷作用機制的研究進展[J].中醫(yī)正骨,2023,35(11):76.

備注/Memo

備注/Memo:
(收稿日期:2020-03-13本文編輯:郭毅曼)通訊作者:童培建E-mail:[email protected]
更新日期/Last Update: 2020-10-10