84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]楊鵬,魏秋實(shí),陳鎮(zhèn)秋,等.基于多模態(tài)圖像配準(zhǔn)技術(shù)構(gòu)建半骨盆全髖關(guān)節(jié)有限元模型[J].中醫(yī)正骨,2017,29(05):1-6.
 YANG Peng,WEI Qiushi,CHEN Zhenqiu,et al.Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(05):1-6.
點(diǎn)擊復(fù)制

基于多模態(tài)圖像配準(zhǔn)技術(shù)構(gòu)建半骨盆全髖關(guān)節(jié)有限元模型()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第29卷
期數(shù):
2017年05期
頁(yè)碼:
1-6
欄目:
基礎(chǔ)研究
出版日期:
2017-05-20

文章信息/Info

Title:
Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique
作者:
楊鵬魏秋實(shí)陳鎮(zhèn)秋王鼎陳達(dá)何偉張慶文
廣州中醫(yī)藥大學(xué)第一附屬醫(yī)院,廣東 廣州 510405
Author(s):
YANG PengWEI QiushiCHEN ZhenqiuWANG DingCHEN DaHE WeiZHANG Qingwen
The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine,Guangzhou 510405,Guangdong,China
關(guān)鍵詞:
髖關(guān)節(jié) 有限元分析 圖像配準(zhǔn)
Keywords:
Key words hip joint finite element analysis image registration
摘要:
目的:基于多模態(tài)圖像配準(zhǔn)技術(shù)利用CT、MRI圖像建立半骨盆全髖關(guān)節(jié)有限元模型。方法:采集1位健康女性志愿者同一體位下的CT和MRI圖像,以DICOM格式保存。先采用Mimics16.0醫(yī)學(xué)影像軟件和Geomagic-Studio11逆向工程軟件以CT數(shù)據(jù)建立髂骨、股骨骨性三維模型,再利用Solidworks軟件將骨性三維模型與MRI圖像進(jìn)行配準(zhǔn)融合,重建與之匹配的髖臼軟骨和股骨頭表面軟骨三維模型,并在模型上標(biāo)記髖關(guān)節(jié)周圍韌帶、肌肉附著點(diǎn)。將數(shù)據(jù)導(dǎo)入Abaqus6.14軟件建立半骨盆全髖關(guān)節(jié)有限元模型,分析模擬雙腿站立位單側(cè)髖關(guān)節(jié)受力情況下(1.6倍體重,800 N)髖關(guān)節(jié)應(yīng)力分布情況。結(jié)果:建立的半骨盆全髖關(guān)節(jié)三維有限元模型,包含髂骨和股骨近端的皮質(zhì)骨、松質(zhì)骨、關(guān)節(jié)軟骨、韌帶和肌肉共5部分三維子模型,涉及122 363個(gè)單元、216 149個(gè)節(jié)點(diǎn)。在800 N載荷下,髖關(guān)節(jié)應(yīng)力大小和分布與以往研究結(jié)果相近。結(jié)論:基于多模態(tài)圖像配準(zhǔn)技術(shù)利用CT、MRI圖像建立的半骨盆全髖關(guān)節(jié)有限元模型,能很好地模擬髖部骨骼、軟骨的形態(tài),并較為真實(shí)地反映髖關(guān)節(jié)的力學(xué)性能,具有一定的科研及臨床價(jià)值。
Abstract:
ABSTRACT Objective:To build the finite element models of hemipelvis and total hip joint by using multi-modality image registration technique with CT and MRI images.Methods:The CT and MRI images of a healthy female volunteer were collected in the same body position and were saved in DICOM format.A osseous three-dimensional model of ilium and femur was built by using Mimics 16.0 medical image software and Geomagic-Studio 11 reverse engineering software and it was based on CT data.Then the osseous three-dimensional model image and MRI images were matched and fused by using Solidworks software to rebuild the matched three-dimensional model of acetabular cartilage and femoral head cartilage.The attachment points of ligaments and muscles around the hip joint were marked on the model.The Data were imported into the Abaqus 6.14 software and a finite element model of hemipelvis and total hip joint was obtained.The stress distribution of unilateral hip joint in analogic standing position(1.6 times of bodyweight,800 N)was analyzed.Results:The three-dimensional finite element model of hemipelvis and total hip joint consists of 5 three-dimensional submodels,including ilium and proximal femoral cortical bones,cancellous bones,articular cartilages,ligaments and muscles,and involved 122 363 units and 216 149 nodes.The stress value and stress distribution of hip joint at the load of 800 N were similar to previous research results.Conclusion:The finite element model of hemipelvis and total hip joint built by using multi-modality image registration technique with CT and MRI images can correctly simulate the morphology of hip bone and cartilage,and it can literally reflect the hip mechanical properties of hip joint,so it has some values in scientific research and clinic.

參考文獻(xiàn)/References:

[1] MADETI BK,CHALAMALASETTI SR,BOLLA PRAGADA S.Biomechanics of knee joint:A review[J].Frontiers of Mechanical Engineering,2015,10(2):176-186.
[2] BREKELMANS WA,POORT HW,SLOOFF TJ.A new method to analyse the mechanical behaviour of skeletal parts[J].Acta Orthop Scand,1972,43(5):301-317.
[3] PIEROH P,SCHNEIDER S,LINGSLEBE U,et al.The Stress-strain data of the hip capsule ligaments are gender and side Independent suggesting a smaller contribution to passive stiffness[J].PLoS One,2016,11(9):e0163306.
[4] GRECU D,PUCALEV I,NEGRU M,et al.Numerical simulations of the 3D virtual model of the human hip joint, using finite element method[J].Rom J Morphol Embryol,2010,51(1):151-155.
[5] SVERDLOVA NS,WITZEL U.Principles of determination and verification of muscle forces in the human musculoskeletal system:Muscle forces to minimise bending stress[J].J Biomech,2010,43(3):387-396.
[6] BROWN TD,PEDERSEN DR,BAKER KJ,et al.Mechanical Consequences of core drilling and bone-grafting on osteonecrosis of the femoral head[J].J Bone Joint Surg Am,1993,75(9):1358-1367.
[7] ZHOU GQ,PANG ZH,CHEN QQ,et al.Reconstruction of the biomechanical transfer path of femoral head necrosis:a subject-specific finite element investigation[J].Comput Biol Med,2014,52:96-101.
[8] CHEN GX,YANG L,LI K,et al.A three-dimensional finite element model for biomechanical analysis of the hip[J].Cell Biochem Biophys,2013,67(2):803-808.
[9] 王沫楠,安賢俊.髖關(guān)節(jié)表面接觸應(yīng)力數(shù)學(xué)模型的建立及驗(yàn)證[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,46(6):2081-2089.
[10] NG K,LAMONTAGNE M,LABROSSE MR.Hip joint stresses due to Cam-Type femoroacetabular impingement:a systematic review of finite element simulations[J].PLoS One,2016,11(1):e0147813.
[11] JORGE JP,SIMÖES FM,PIRES EB,et al.Finite element simulations of a hip joint with femoroacetabular impingement[J].Comput Methods Biomech Biomed Engin,2014,17(11):1275-1284.
[12] BONARETTI S,SEILER C,BOICHON C,et al.Image-based vs.mesh-based statistical appearance models of the human femur:implications for finite element simulations[J].Med Eng Phys,2014,36(12):1626-1635.
[13] TAYLOR M,PRENDERGAST PJ.Four decades of finite element analysis of orthopaedic devices:where are we now and what are the opportunities?[J].J Biomech,2015,48(5):767-778.
[14] KLING-PETERSEN T,RYDMARK M.Modeling and modification of medical 3D objects.The benefit of using a haptic modeling tool[J].Stud Health Technol Inform,2000,70:162-167.
[15] ESCOTT EJ,RUBINSTEIN D.Free DICOM image viewing and processing software for your desktop computer:what's available and what it can do for you[J].Radiographics,2003,23(5):1341-1357.
[16] 傅棟,靳安民.應(yīng)用 CT 斷層圖像快速構(gòu)建人體骨骼有限元幾何模型的方法[J].中國(guó)組織工程研究與臨床康復(fù),2007,11(9):1620-1623.
[17] 張俊杰,周濤,陸惠玲,等.特征級(jí)多模態(tài)醫(yī)學(xué)圖像融合技術(shù)的研究與進(jìn)展[J].生物醫(yī)學(xué)工程學(xué)雜志,2016,33(2):394-399.
[18] SHEKHAR R.MO-DE-202-04:Multimodality Image-Guided Surgery and Intervention:For the Rest of Us [J].Med Phys,2016,43(6):3699-3700.
[19] CHRISTENSEN G.WE-H-202-04:advanced medical image registration techniques[J].Med Phys,2016,43(6):3845-3845.

相似文獻(xiàn)/References:

[1]鄧真,王輝昊,王寬,等.C2~T1三維有限元模型的建立和驗(yàn)證[J].中醫(yī)正骨,2016,28(10):1.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(05):1.
[2]葉宜穎,高景華,高春雨.有限元分析法在脊柱推拿手法生物力學(xué)研究中的應(yīng)用[J].中醫(yī)正骨,2016,28(10):29.
[3]沈知彼,王輝昊,王寬,等.頸椎定位旋轉(zhuǎn)扳法對(duì)不同曲度頸椎內(nèi)部結(jié)構(gòu)應(yīng)力的影響[J].中醫(yī)正骨,2018,30(03):8.
 SHEN Zhibi,WANG Huihao,WANG Kuan,et al.Effect of cervical fixed-position rotary pulling manipulation on internal structure stresses of cervical vertebrae with different curvature[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(05):8.
[4]彭小東,張曉剛,趙文韜,等.有限元分析在過伸復(fù)位治療骨質(zhì)疏松性椎體壓縮性骨折生物力學(xué)研究中的應(yīng)用進(jìn)展[J].中醫(yī)正骨,2018,30(07):25.
[5]張明才,陳博,石印玉,等.頸椎單節(jié)椎體平移錯(cuò)縫對(duì)頸椎主要結(jié)構(gòu)應(yīng)力影響的有限元分析[J].中醫(yī)正骨,2020,32(04):1.
 ZHANG Mingcai,CHEN Bo,SHI Yinyu,et al.Influence of translational dislocation of single-segment cervical vertebral body on the stresses of main structures of cervical vertebra:a finite element analysis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(05):1.
[6]林福,付坤飛,全仁夫.有限元法在頸椎生物力學(xué)研究中的應(yīng)用進(jìn)展[J].中醫(yī)正骨,2021,33(06):60.
[7]楊靜,劉玉珂,郭會(huì)利,等.99mTc-MDP SPECT/CT在凸輪型髖關(guān)節(jié)撞擊綜合征診斷中的應(yīng)用價(jià)值[J].中醫(yī)正骨,2022,34(02):66.
[8]金帥捷,呂帥潔,汪小健,等.反映學(xué)術(shù)進(jìn)展 引領(lǐng)學(xué)科發(fā)展粘連性髖關(guān)節(jié)囊炎的研究進(jìn)展[J].中醫(yī)正骨,2022,34(06):39.
[9]丘明旺,孫玫瑤,吳耿佳,等.腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法對(duì)椎間盤及關(guān)節(jié)突關(guān)節(jié)軟骨影響的有限元分析[J].中醫(yī)正骨,2024,36(01):14.
 QIU Mingwang,SUN Meiyao,WU Gengjia,et al.Effects of lumbar stereotaxic oblique-pulling manipulation versus traditional oblique-pulling manipulation on lumbar intervertebral discs and articular cartilage of lumbar zygapophysial joints:a finite element analysis-based biomechanical study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(05):14.

更新日期/Last Update: 2017-05-20