84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]尹曉冬,李浩,成永忠,等.三臂十一軸骨折復(fù)位機(jī)器人在山羊脛骨干骨折復(fù)位中應(yīng)用的實(shí)驗(yàn)研究[J].中醫(yī)正骨,2024,36(12):1-7.
 YIN Xiaodong,LI Hao,CHENG Yongzhong,et al.Applying a three-arm eleven-axis robot in the reduction of tibial shaft fractures in goats:an experimental study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(12):1-7.
點(diǎn)擊復(fù)制

三臂十一軸骨折復(fù)位機(jī)器人在山羊脛骨干骨折復(fù)位中應(yīng)用的實(shí)驗(yàn)研究()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第36卷
期數(shù):
2024年12期
頁(yè)碼:
1-7
欄目:
基礎(chǔ)研究
出版日期:
2024-12-20

文章信息/Info

Title:
Applying a three-arm eleven-axis robot in the reduction of tibial shaft fractures in goats:an experimental study
作者:
尹曉冬1李浩2成永忠1陳洋1劉飛1李銳1陳健龍3肖嘉冕3李春廣4王書元4李克4
1.中國(guó)中醫(yī)科學(xué)院望京醫(yī)院,北京 100102; 2.聊城市人民醫(yī)院,山東 聊城 252000; 3.北京中醫(yī)藥大學(xué)研究生院,北京 100029; 4.南陽(yáng)市中醫(yī)院,河南 南陽(yáng) 473006
Author(s):
YIN Xiaodong1LI Hao2CHENG Yongzhong1CHEN Yang1LIU Fei1LI Rui1CHEN Jianlong3XIAO Jiamian3LI Chunguang4WANG Shuyuan4LI Ke4
1.Wangjing Hospital of CACMS,Beijing 100102,China 2.Liaocheng People's Hospital,Liaocheng 252000,Shandong,China 3.Graduate School of Beijing University of Chinese Medicine,Beijing 100029,China 4.Nanyang TCM Hospital,Nanyang 473006,Henan,China
關(guān)鍵詞:
脛骨骨折 機(jī)器人外科手術(shù) 山羊 動(dòng)物實(shí)驗(yàn)
Keywords:
tibial fractures robotic surgical procedures goats animal experimentation
摘要:
目的:研究應(yīng)用三臂十一軸骨折復(fù)位機(jī)器人進(jìn)行山羊脛骨干骨折復(fù)位的有效性和安全性。方法:選取健康雄性山羊6只,將每只山羊的雙側(cè)后肢采用抽簽法隨機(jī)分為機(jī)器人復(fù)位組和徒手復(fù)位組,每組6條山羊后肢。在山羊雙側(cè)后肢脛骨下1/3處截骨建立山羊脛骨干骨折模型,然后機(jī)器人復(fù)位組采用三臂十一軸骨折復(fù)位機(jī)器人進(jìn)行骨折閉合復(fù)位,徒手復(fù)位組徒手進(jìn)行骨折閉合復(fù)位。骨折復(fù)位后均采用外固定支架固定。記錄術(shù)中骨折達(dá)到復(fù)位標(biāo)準(zhǔn)的復(fù)位次數(shù)、X線透視次數(shù),以及復(fù)位參與人數(shù)和手術(shù)時(shí)間(從開始切口造模至骨折復(fù)位固定完成的時(shí)間,包括造模及復(fù)位準(zhǔn)備時(shí)間和骨折復(fù)位固定時(shí)間2部分)。觀察術(shù)中機(jī)器人設(shè)備運(yùn)行情況。手術(shù)結(jié)束后,在山羊后肢X線片上,測(cè)量骨折端側(cè)方成角、前后成角、側(cè)方移位距離、軸向移位距離和前后移位距離,評(píng)價(jià)骨折復(fù)位情況。結(jié)果:手術(shù)過(guò)程中三臂十一軸骨折復(fù)位機(jī)器人運(yùn)行平穩(wěn),無(wú)側(cè)翻、結(jié)構(gòu)松動(dòng)、失控及故障報(bào)警等安全事故發(fā)生。機(jī)器人復(fù)位組術(shù)中復(fù)位參與人數(shù)少于徒手復(fù)位組(Z=-3.052,P=0.002),造模及復(fù)位準(zhǔn)備時(shí)間長(zhǎng)于徒手復(fù)位組(Z=-2.908,P=0.004),骨折端側(cè)方成角小于徒手復(fù)位組(Z=-2.242,P=0.025); 2組山羊后肢其他手術(shù)情況及骨折復(fù)位評(píng)價(jià)指標(biāo)比較,組間差異均無(wú)統(tǒng)計(jì)學(xué)意義。結(jié)論:與徒手復(fù)位相比,應(yīng)用三臂十一軸骨折復(fù)位機(jī)器人閉合復(fù)位山羊脛骨干骨折,骨折復(fù)位好、復(fù)位參與人數(shù)少,且安全性好,但準(zhǔn)備時(shí)間較長(zhǎng)。
Abstract:
Objective:To investigate the outcomes and safety of a three-arm eleven-axis robot in the reduction of tibial shaft fractures(TSFs)in goats.Methods:Six healthy male goats were selected,and their bilateral hind limbs were randomized into a robot reduction group and a manual reduction group by drawing lots,with 6 hind limbs in each group.The TSFs models were established by osteotomy at the lower one-third of the tibia in the bilateral hind limbs of the goats.After successful modeling,the hind limbs in robot reduction group were treated with closed reduction by using a three-arm eleven-axis robot,while,that in manual reduction group by hand.After successful reduction,all fractures were fixed with external fixator.The times of reduction reaching the criteria of fracture reduction during the surgical process,intraoperative X-ray exposure,the participants involved in the reduction,and the surgery time(the time from the beginning of making incision for modeling to the completion of fracture reduction and fixation,including the time for preparing modeling and reduction,and the time for fracture reduction and fixation)were recorded,and the operation of the robot during the surgical process was observed.After the end of the surgery,the lateral angulation,anteroposterior angulation,lateral displacement distance,axial displacement distance,and anteroposterior displacement distance at the fractured ends were measured on the X-ray films of the hind limbs of the goats to evaluate fracture reduction performance.Results:During the surgical process,the three-arm eleven-axis robot ran smoothly without the safety accidents such as rollover,structural looseness,loss of control,and fault alarms.Moreover,the robot reduction group need fewer participants in the reduction,longer time in preparing modeling and reduction,and presented smaller lateral angulation at the fractured end compared to the manual reduction group(Z=-3.052,P=0.002; Z=-2.908,P=0.004; Z=-2.242,P=0.025); while,the comparison of the other surgical conditions and the fracture reduction evaluation indicators for the hind limbs of goats revealed no significant differences between the 2 group.Conclusion:The three-arm eleven-axis robot achieves better fracture reduction performance,needs fewer participants in the reduction,and behaves higher safety,but requires longer preparation time compared to the manual reduction in the closed reduction of TSFs in goats.

參考文獻(xiàn)/References:

[1] WU Z,DAI Y,ZENG Y.Intelligent robot-assisted fracture reduction system for the treatment of unstable pelvic fractures[J].J Orthop Surg Res,2024,19(1):271.
[2] VIBERT B,PAILHÉ R,MORIN V,et al.Navigation for lower limb alignment during internal fixation of complex tibial-plateau fractures[J].Orthop Traumatol Surg Res,2018,104(4):491-496.
[3] JATOI A,SAHITO B,KUMAR D,et al.Fixation of crescent pelvic fracture in a tertiary care hospital:a steep learning curve[J].Cureus,2019,11(9):e5614.
[4] GERICKE L,FRITZ A,OSTERHOFF G,et al.Percutaneous operative treatment of fragility fractures of the pelvis may not increase the general rate of complications compared to non-operative treatment[J].Eur J Trauma Emerg Surg,2022,48(5):3729-3735.
[5] KÜPER M A,TRULSON A,MINARSKI C,et al.Risks and strategies to avoid approach-related complications during ope-rative treatment of pelvic ring or acetabular fractures[J].Z Orthop Unfall,2021,159(2):144-152.
[6] HU M,ZENG W,ZHANG J,et al.Fixators dynamization for delayed union and non-union of femur and tibial fractures:a review of techniques,timing and influence factors[J].J Orthop Surg Res,2023,18(1):577.
[7] GRAS F,MARINTSCHEV I,WILHARM A,et al.2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries—a case series[J].BMC Musculoskelet Disord,2010,11:153.
[8] ZHAO J X,LI C,REN H,et al.Evolution and current applications of robot-assisted fracture reduction:a comprehensive review[J].Ann Biomed Eng,2020,48(1):203-224.
[9] BAUZANO E,GARCIA-MORALES I,DEL SAZ-OROZCO P,et al.A minimally invasive surgery robotic assistant for HALS-SILS techniques[J].Comput Methods Programs Biomed,2013,112(2):272-283.
[10] WILSON J T,GERBER M J,PRINCE S W,et al.Intraocular robotic interventional surgical system(IRISS):mechanical design,evaluation,and master-slave manipulation[J].Int J Med Robot,2018,14(1):1002.
[11] BAI L,YANG J,CHEN X,et al.Solving the time-varying inverse kinematics problem for the da vinci surgical robot[J].Appl Sci,2019,9(3):546.
[12] CHEN A F,KAZARIAN G S,JESSOP G W,et al. Robotic technology in orthopaedic surgery[J].J Bone Joint Surg Am,2018,100(22):1984-1992.
[13] JACOFSKY D J,ALLEN M.Robotics in arthroplasty:a comprehensive review[J].J Arthroplasty,2016,31(10):2353-2363.
[14] JOSEPH J R,SMITH B W,LIU X,et al.Current applications of robotics in spine surgery:a systematic review of the literature[J].Neurosurg Focus,2017,42(5):E2.
[15] KONAN S,MADEN C,ROBBINS A.Robotic surgery in hip and knee arthroplasty[J].Br J Hosp Med(Lond),2017,78(7):378-384.
[16] ZHAO C,CAO Q,SUN X,et al.Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures[J].Injury,2023,54(2):604-614.
[17] 中華人民共和國(guó)科學(xué)技術(shù)部.關(guān)于發(fā)布《關(guān)于善待實(shí)驗(yàn)動(dòng)物的指導(dǎo)性意見(jiàn)》的通知[EB/OL].(2006-09-30)[2024-09-20].https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2010before/201712/t20171222_137025.html.
[18] ZHAO C,WANG Y,WU X,et al.Design and evaluation of an intelligent reduction robot system for the minimally invasive reduction in pelvic fractures[J].J Orthop Surg Res,2022,17(1):205.
[19] WANG T,LI C,HU L,et al.A removable hybrid robot system for long bone fracture reduction[J].Biomed Mater Eng,2014,24(1):501-509.
[20] BAI L,YANG J,CHEN X,et al.Medical robotics in bone fracture reduction surgery:a review[J].Sensors(Basel),2019,19(16):3593.
[21] KOU W,ZHOU P,LIN J,et al.Technologies evolution in robot-assisted fracture reduction systems:a comprehensive review[J].Front Robot AI,2023,10:1315250.
[22] 成永忠,白金廣,王朝魯,等.基于中國(guó)接骨學(xué)骨折微創(chuàng)與外固定技術(shù)的臨床實(shí)踐與智能化思考[J].中國(guó)骨傷,2023,36(9):795-797.
[23] 趙勇,魏光成,連智華.中國(guó)接骨學(xué)創(chuàng)新發(fā)展之思辨[J].中國(guó)骨傷,2022,35(7):703-706.

相似文獻(xiàn)/References:

[1]肖善富,張喜善,于鳳珍.髕下小切口鋼絲紐扣式內(nèi)固定治療脛骨髁間隆突骨折[J].中醫(yī)正骨,2015,27(11):34.
[2]葛波涌,王玉波,王明太,等.交鎖髓內(nèi)釘內(nèi)固定治療脛骨干骨折的臨床研究[J].中醫(yī)正骨,2015,27(10):8.
 GE Boyong,WANG Yubo,WANG Mingtai,et al.Clinical study on the internal fixation with interlocking intramedullary nail for the treatment of tibial shaft fractures[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(12):8.
[3]全先輝,萬(wàn)春友,劉磊,等.Taylor空間支架外固定治療脛腓骨開放性骨折[J].中醫(yī)正骨,2015,27(10):30.
[4]何 濤.有限切開植骨鋼板內(nèi)固定治療 SchatzkerⅡ、Ⅲ型脛骨平臺(tái)骨折[J].中醫(yī)正骨,2015,27(09):22.
[5]何忠,黃宗權(quán),王強(qiáng),等.脛骨中下段螺旋形骨折合并后踝裂紋骨折的診治體會(huì)[J].中醫(yī)正骨,2015,27(09):28.
[6]王慶東,李付彬,徐向峰,等.關(guān)節(jié)鏡下可吸收螺釘內(nèi)固定治療兒童脛骨髁間嵴骨折[J].中醫(yī)正骨,2015,27(12):52.
[7]李楠,李鋒.脛骨平臺(tái)骨折的手術(shù)治療進(jìn)展[J].中醫(yī)正骨,2015,27(12):78.
[8]張一鳴,張學(xué)民,陸洲.經(jīng)皮解剖型鎖定鋼板固定治療脛骨遠(yuǎn)端骨折[J].中醫(yī)正骨,2015,27(02):47.
[9]陳利軍,田野,劉文剛,等.非典型膝關(guān)節(jié)外傷后脛骨近端隱匿性骨折的影像診斷[J].中醫(yī)正骨,2015,27(06):26.
[10]徐俊峰,王翔宇.切開復(fù)位鎖定加壓鋼板內(nèi)固定治療高能量損傷Pilon骨折[J].中醫(yī)正骨,2015,27(06):54.

備注/Memo

備注/Memo:
基金項(xiàng)目:中國(guó)中醫(yī)科學(xué)院科技創(chuàng)新工程項(xiàng)目(CI2023C004YG); 國(guó)家自然科學(xué)基金項(xiàng)目(82274561)
通訊作者:成永忠 E-mail:[email protected]
更新日期/Last Update: 1900-01-01