84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]丘明旺,孫玫瑤,吳耿佳,等.腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法對椎間盤及關(guān)節(jié)突關(guān)節(jié)軟骨影響的有限元分析[J].中醫(yī)正骨,2024,36(01):14-22.
 QIU Mingwang,SUN Meiyao,WU Gengjia,et al.Effects of lumbar stereotaxic oblique-pulling manipulation versus traditional oblique-pulling manipulation on lumbar intervertebral discs and articular cartilage of lumbar zygapophysial joints:a finite element analysis-based biomechanical study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(01):14-22.
點擊復制

腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法對椎間盤及關(guān)節(jié)突關(guān)節(jié)軟骨影響的有限元分析()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第36卷
期數(shù):
2024年01期
頁碼:
14-22
欄目:
基礎(chǔ)研究
出版日期:
2024-01-20

文章信息/Info

Title:
Effects of lumbar stereotaxic oblique-pulling manipulation versus traditional oblique-pulling manipulation on lumbar intervertebral discs and articular cartilage of lumbar zygapophysial joints:a finite element analysis-based biomechanical study
作者:
丘明旺1孫玫瑤2吳耿佳2黃帆3劉嘉俊2盧曼琪2劉峴4嚴兆賢4趙思怡5田強4吳山4范志勇4
1.廣州中醫(yī)藥大學第二臨床醫(yī)學院,廣東 廣州 510405; 2.廣州中醫(yī)藥大學針灸康復臨床醫(yī)學院,廣東 廣州 510405; 3.香港理工大學康復科學系,香港 999077; 4.廣東省中醫(yī)院,廣東 廣州 510120; 5.深圳市龍崗區(qū)第五人民醫(yī)院,廣東 深圳 518111
Author(s):
QIU Mingwang1SUN Meiyao2WU Gengjia2HUANG Fan3LIU Jiajun2LU Manqi2LIU Xian4YAN Zhaoxian4ZHAO Siyi5TIAN Qiang4WU Shan4FAN Zhiyong4
1.The Second Clinical Medical College of Guangzhou University of Chinese Medicine,Guangzhou 510405,Guangdong,China 2.Clinical Medical College of Acupuncture Moxibustion and Rehabilitation,Guangzhou University of Chinese Medicine,Guangzhou510405,Guangdong,China 3.Department of Rehabilitation Sciences,The Hong Kong Polytechnic University,Hong Kong 999077,China 4.Guangdong Provincial Hospital of Chinese Medicine,Guangzhou 510120,Guangdong,China 5.The Fifth People's Hospital of Longgang District,Shenzhen 518111,Guangdong,China
關(guān)鍵詞:
推拿療法 有限元分析 椎間盤移位 腰椎 生物力學
Keywords:
tui na therapy finite element analysis intervertebral disc displacement lumbar vertebrae biomechanics
摘要:
目的:分析腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法對椎間盤及關(guān)節(jié)突關(guān)節(jié)軟骨的影響。方法:選取1例成年男性L4~5椎間盤突出癥患者(椎間盤向左后方突出),采用西門子Light Speed 64排螺旋CT進行腰椎和骨盆掃描,層厚0.5 mm。基于CT掃描數(shù)據(jù),應用三維有限元建模軟件建立腰椎-骨盆三維有限元模型,通過與文獻數(shù)據(jù)比較驗證模型有效性后,分析腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法作用下腰椎-骨盆整體應力、L4~5椎間盤應力和位移、L4~5關(guān)節(jié)突關(guān)節(jié)軟骨應力和位移、L4~5上下關(guān)節(jié)突表面中心點相對空間距離。結(jié)果:①腰椎-骨盆三維有限元模型建立及驗證結(jié)果。建立的腰椎-骨盆三維有限元模型共有 550 215 個節(jié)點、344 359個單元,高度模擬了腰椎-骨盆的結(jié)構(gòu)與材料特性。在模擬加載條件下,L4~5節(jié)段屈伸、側(cè)屈、軸向旋轉(zhuǎn)活動范圍與文獻中的既往研究結(jié)果基本相同。②模型整體應力。實施傳統(tǒng)腰椎斜扳法時,腰椎-骨盆三維有限元模型最大應力為5.31 MPa,主要集中于L1、L2、L4、L5椎體; 實施腰椎立體定位斜扳法時,腰椎-骨盆三維有限元模型最大應力為29.30 MPa,主要集中于L1、L2椎體及L3、L4、L5椎弓根。③L4~5椎間盤應力及位移。實施傳統(tǒng)腰椎斜扳法時,L4~5椎間盤纖維環(huán)平均等效應力為 1.12 MPa,纖維環(huán)整體向左、向前、向下發(fā)生位移,平均位移分別為0.36 mm、0.20 mm、0.05 mm; 髓核平均等效應力為0.02 MPa,髓核整體向左、向前、向下發(fā)生位移,平均位移分別為0.35 mm、0.24 mm、0.06 mm。實施腰椎立體定位斜扳法時,L4~5椎間盤纖維環(huán)平均等效應力為1.14 MPa,纖維環(huán)整體向左、向前、向下發(fā)生位移,平均位移分別為0.39 mm、1.30 mm、0.05 mm; 髓核平均等效應力為0.02 MPa,髓核整體向左、向前、向下發(fā)生位移,平均位移分別為0.38 mm、1.30 mm、0.07 mm。④L4~5關(guān)節(jié)突關(guān)節(jié)軟骨應力及位移。實施傳統(tǒng)腰椎斜扳法時,L4~5左側(cè)和右側(cè)關(guān)節(jié)突關(guān)節(jié)軟骨平均等效應力分別為2.46 MPa、3.18 MPa,平均位移分別為1.10 mm、0.21 mm; 實施腰椎立體定位斜扳法時,L4~5左側(cè)和右側(cè)關(guān)節(jié)突關(guān)節(jié)軟骨平均等效應力分別為2.70 MPa、3.22 MPa,平均位移分別為1.46 mm、0.65 mm。⑤L4~5上下關(guān)節(jié)突表面中心點相對空間距離。實施傳統(tǒng)腰椎斜扳法時,L4~5左、右側(cè)上下關(guān)節(jié)突表面中心點相對空間距離分別為0.75 mm、0.34 mm; 實施腰椎立體定位斜扳法時,L4~5左、右側(cè)上下關(guān)節(jié)突表面中心點相對空間距離分別為0.81 mm、0.23 mm。結(jié)論:腰椎立體定位斜扳法與傳統(tǒng)腰椎斜扳法均能使腰椎間盤突出癥患者病變節(jié)段椎間盤及關(guān)節(jié)突關(guān)節(jié)軟骨產(chǎn)生一定的應力和位移; 相較于傳統(tǒng)腰椎斜扳法,腰椎立體定位斜扳法能使病變節(jié)段椎間盤和關(guān)節(jié)突關(guān)節(jié)軟骨產(chǎn)生更大的應力和位移,這也可能是腰椎立體定位斜扳法比傳統(tǒng)腰椎斜扳法治療腰椎間盤突出癥療效更佳的原因。
Abstract:
Objective:To compare and analyze the effects of lumbar stereotaxic oblique-pulling manipulation versus traditional lumbar oblique-pulling manipulation on lumbar intervertebral discs and articular cartilage of lumbar zygapophysial joints.Methods:One male adult with L4-5 intervertebral disc herniation(herniated to left rear)was selected for lumbar spine and pelvis scanning by using a Siemens Light Speed 64-slice spiral CT,with a slice thickness of 0.5 mm.Based on the CT scanning data,a three-dimensional(3D)finite element model of lumbar spine-pelvis was established by using a 3D finite element modeling software.After verifying the validity of the model by comparing with the article data,the overall stress of the lumbar spine-pelvis model,the stresses and displacements of the L4-5 intervertebral disc and articular cartilage of L4-5 zygapophysial joint,and the relative spatial distance between the central points of upper and lower articular process surfaces at L4~5 segment under the action of stereotaxic oblique-pulling manipulation and traditional oblique-pulling manipulation were recorded and analyzed.Results:①The established lumbar spine-pelvis 3D finite element model consisted of 550 215 nodes and 344 359 elements,which highly simulated the structure and material properties of the lumbar spine-pelvis.Under the simulated loading conditions,the range of motion(ROM),including flexion-extension,lateroflexion,and axial rotation,of the L4-5 segment were basically the same as the results previously reported.②When the traditional oblique-pulling manipulation was performed on the lumbar spine-pelvis 3D finite element model,the maximum stress of the model was 5.31 MPa,and mainly concentrated on the L1,L2,L4,and L5 vertebrae; while when the stereotaxic oblique-pulling manipulation was implemented,the maximum stress of the model was 29.30 MPa,and mainly on L1 and L2 vertebrae as well as the L3,L4,and L5 vertebral pedicles.③Under the action of traditional lumbar oblique-pulling manipulation,the annulus fibrosus of L4-5 intervertebral disc showed the average equivalent stress as 1.12 MPa,and the whole annulus fibrosus displaced leftward,forward,and downward,with an average displacement of 0.36,0.20,and 0.05 mm,respectively; the nucleus pulposus showed the average equivalent stress as 0.02 MPa,and the whole nucleus pulposus displaced leftward,forward,and downward,with an average displacement of 0.35,0.24,and 0.06 mm,respectively.While,under the stereotaxic oblique-pulling manipulation,the annulus fibrosus of L4-5 intervertebral disc exhibited the average equivalent stress as 1.14 MPa,and the whole annulus fibrosus displaced leftward,forward,and downward,with an average displacement of 0.39,1.30,and 0.05 mm,respectively; the nucleus pulposus exhibited the average equivalent stress as 0.02 MPa,and the whole nucleus pulposus displaced leftward,forward,and downward,with an average displacement of 0.38,1.30,and 0.07 mm,respectively.④In the case of the traditional oblique-pulling manipulation,the articular cartilage of zygapophysial joint at L4-5 showed the average equivalent stresses as 2.46 and 3.18 MPa and the average displacements as 1.10 and 0.21 mm on the left side and right side,respectively.While,in the case of the stereotaxic oblique-pulling manipulation,the average equivalent stresses were 2.70 and 3.22 MPa and the average displacements were 1.46 and 0.65 mm on the left side and right side,respectively.⑤The relative spatial distances between the central points of the upper and lower articular process surfaces on the left side and right side at L4-5 were 0.75 and 0.34 mm in the case of traditional oblique-pulling manipulation,and 0.81 and 0.23 mm in the case of stereotaxic oblique-pulling manipulation.Conclusion:Both lumbar stereotaxic oblique-pulling manipulation and traditional lumbar oblique-pulling manipulation can cause stress and displacement in intervertebral discs and articular cartilage of zygapophysial joints of the affected segment in patients with lumbar disc herniation.Compared with the latter,the former can cause greater stress and displacement,which may be the reason why the former behaves better than the latter in the outcome in treating lumbar disc herniation.

參考文獻/References:

[1] MO Z,ZHANG R,CHEN J,et al.Comparison between oblique pulling spinal manipulation and other treatments for lumbar disc herniation:a systematic review and meta-analysis[J].J Manipulative Physiol Ther,2018,41(9):771-779.
[2] 吳山.林應強筋傷學術(shù)經(jīng)驗擷英[M].北京:人民衛(wèi)生出版社,2015:4-6.
[3] 范志勇,蔡敏.吳山診治筋傷學術(shù)思想及臨證經(jīng)驗[M].北京:科學出版社,2019:12-13.
[4] KUMARESAN S,YOGANANDAN N,PINTAR F A,et al.Biomechanical study of pediatric human cervical spine:a finite element approach[J].J Biomech Eng,2000,122(1):60-71.
[5] ZHANG Y,AWREJCEWICZ J,BAKER J S,et al.Cartilage stiffness effect on foot biomechanics of Chinese bound foot:a finite element analysis[J].Front Physiol,2018,9:1434.
[6] ZHANG R,MO Z,LI D,et al.Biomechanical comparison of lumbar fixed-point oblique pulling manipulation and traditional oblique pulling manipulation in treating lumbar intervertebral disk protrusion[J].J Manipulative Physiol Ther,2020,43(5):446-456.
[7] DU H G,LIAO S H,JIANG Z,et al.Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint[J].Saudi Pharm J,2016,24(3):305-311.
[8] 田強,鐘僑霖,趙家友,等.提拉旋轉(zhuǎn)斜扳法操作時腰椎椎間盤應力及應變的有限元研究[J].中國臨床解剖學雜志,2019,37(1):83-86.
[9] 盧鈺,向俊宜,尹本敬,等.斜扳手法和拔伸按壓斜扳復合手法治療腰椎間盤突出癥的有限元對比分析[J].中國組織工程研究,2023,27(13):2011-2015.
[10] 中華醫(yī)學會疼痛學分會脊柱源性疼痛學組.腰椎間盤突出癥診療中國疼痛專家共識[J].中國疼痛醫(yī)學雜志,2020,26(1):2-6.
[11] ZHONG Z C,WEI S H,WANG J P,et al.Finite element analysis of the lumbar spine with a new cage using a topology optimization method[J].Med Eng Phys,2006,28(1):90-98.
[12] MO Z J,ZHAO Y B,WANG L Z,et al.Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue[J].Eur Spine J,2014,23(3):613-621.
[13] FAN W,ZHAO D,GUO L X.A finite element model of the human lower thorax to pelvis spinal segment:validation and modal analysis[J].Biomed Mater Eng,2021,32(5):267-279.
[14] SONG M,SUN K,LI Z,et al.Stress distribution of different lumbar posterior pedicle screw insertion techniques:a combination study of finite element analysis and biomechanical test[J].Sci Rep,2021,11(1):12968.
[15] 文鵬飛,李亞寧,路玉峰,等.腰椎-骨盆-髖關(guān)節(jié)有限元模型建立及生物力學分析[J].中國組織工程研究,2023,27(36):5741-5746.
[16] 郭汝松,林偉鋒,田強,等.立體定位斜扳法治療腰椎間盤突出癥的臨床研究[J].頸腰痛雜志,2009,30(1):84-85.
[17] 彭思琪,何添藝,曾雯慧,等.腰椎斜扳手法治療腰椎間盤突出癥的研究進展[J].中醫(yī)正骨,2022,34(4):38-41.
[18] 李俊毅,孔賞,馬虎升,等.手法治療腰椎間盤突出癥的作用機制研究進展[J].中醫(yī)正骨,2019,31(4):40-42.
[19] 呂立江,包家立,范炳華,等.杠桿定位手法作用下正常腰椎間盤的應力-應變特性初探[J].浙江中醫(yī)藥大學學報,2013(10):1156-1159.
[20] 蘇少亭,周紅海,侯召猛,等.腰椎定點旋轉(zhuǎn)手法操作中拇指推力的有限元分析[J].中國組織工程研究,2024,28(12):1823-1828.
[21] 韓璽銘,牛立盼,劉鳳霞,等.基于CT技術(shù)的成年人腰椎間盤及終板解剖參數(shù)研究[J].中國骨傷,2023,36(1):72-78.
[22] O'LEARY S A,PASCHOS N K,LINK J M,et al.Facet joints of the spine:structure-function relationships,problems and treatments, and the potential for regeneration[J].Annu Rev Biomed Eng,2018,20:145-170.
[23] ZHENG J,DUAN C,MA C.Spinal fixed-point rotating reduction for treatment of facet joint disorders[J].Altern Ther Health Med,2023,29(7):316-321.
[24] 田聰.斜扳、旋轉(zhuǎn)復位法對常用LDH后路手術(shù)后腰椎應力影響的有限元分析[D].南寧:廣西中醫(yī)藥大學,2018.
[25] CRAMER G D,ROSS K,RAJU P K,et al.Quantification of cavitation and gapping of lumbar zygapophyseal joints during spinal manipulative therapy[J].J Manipulative Physiol Ther,2012,35(8):614-621.
[26] GHEZELBASH F,SCHMIDT H,SHIRAZI-ADL A,et al.Internal load-sharing in the human passive lumbar spine:review of in vitro and finite element model studies[J].J Biomech, 2020,102:109441.
[27] GRIFFITH J F,WANG Y X,ANTONIO G E,et al.Modified Pfirrmann grading system for lumbar intervertebral disc degeneration[J].Spine(Phila Pa 1976),2007,32(24):E708-E712.
[28] DING H,LIAO L,YAN P,et al.Three-dimensional finite element analysis of L4-5 degenerative lumbar disc traction under different pushing heights[J/OL].J Healthc Eng,2021[2023-09-01].https://pubmed.ncbi.nlm.nih.gov/34336148.

相似文獻/References:

[1]鄧真,王輝昊,王寬,等.C2~T1三維有限元模型的建立和驗證[J].中醫(yī)正骨,2016,28(10):1.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(01):1.
[2]葉宜穎,高景華,高春雨.有限元分析法在脊柱推拿手法生物力學研究中的應用[J].中醫(yī)正骨,2016,28(10):29.
[3]楊鵬,魏秋實,陳鎮(zhèn)秋,等.基于多模態(tài)圖像配準技術(shù)構(gòu)建半骨盆全髖關(guān)節(jié)有限元模型[J].中醫(yī)正骨,2017,29(05):1.
 YANG Peng,WEI Qiushi,CHEN Zhenqiu,et al.Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(01):1.
[4]沈知彼,王輝昊,王寬,等.頸椎定位旋轉(zhuǎn)扳法對不同曲度頸椎內(nèi)部結(jié)構(gòu)應力的影響[J].中醫(yī)正骨,2018,30(03):8.
 SHEN Zhibi,WANG Huihao,WANG Kuan,et al.Effect of cervical fixed-position rotary pulling manipulation on internal structure stresses of cervical vertebrae with different curvature[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(01):8.
[5]彭小東,張曉剛,趙文韜,等.有限元分析在過伸復位治療骨質(zhì)疏松性椎體壓縮性骨折生物力學研究中的應用進展[J].中醫(yī)正骨,2018,30(07):25.
[6]張明才,陳博,石印玉,等.頸椎單節(jié)椎體平移錯縫對頸椎主要結(jié)構(gòu)應力影響的有限元分析[J].中醫(yī)正骨,2020,32(04):1.
 ZHANG Mingcai,CHEN Bo,SHI Yinyu,et al.Influence of translational dislocation of single-segment cervical vertebral body on the stresses of main structures of cervical vertebra:a finite element analysis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(01):1.
[7]林福,付坤飛,全仁夫.有限元法在頸椎生物力學研究中的應用進展[J].中醫(yī)正骨,2021,33(06):60.
[8]黃帆,鄭貝思,吳存書,等.推拿的質(zhì)量控制與規(guī)范化[J].中醫(yī)正骨,2022,34(02):54.
[9]范升,劉巨堯,龍抗勝,等.推拿手法結(jié)合運動療法的治療理念和理論依據(jù)[J].中醫(yī)正骨,2023,35(05):52.

備注/Memo

備注/Memo:
基金項目:廣東省中醫(yī)藥局科研項目(20212093); 廣東省中醫(yī)院林氏正骨推拿流派傳承工作室建設(shè)項目
通訊作者:范志勇 E-mail:[email protected]
更新日期/Last Update: 1900-01-01