84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]劉靜文,李輝,趙玉敏,等.不同高度負(fù)跟鞋對(duì)健康成人腰腹肌和下肢肌活動(dòng)的影響[J].中醫(yī)正骨,2023,35(05):14-19.
 LIU Jingwen,LI Hui,ZHAO Yumin,et al.Effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2023,35(05):14-19.
點(diǎn)擊復(fù)制

不同高度負(fù)跟鞋對(duì)健康成人腰腹肌和下肢肌活動(dòng)的影響()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第35卷
期數(shù):
2023年05期
頁碼:
14-19
欄目:
臨床研究
出版日期:
2023-05-20

文章信息/Info

Title:
Effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults
作者:
劉靜文李輝趙玉敏劉鵬民王文彪
(新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院,河南 衛(wèi)輝 453100)
Author(s):
LIU JingwenLI HuiZHAO YuminLIU PengminWANG Wenbiao
The First Affiliated Hospital of Xinxiang Medical University,Weihui 453100,Henan,China
關(guān)鍵詞:
肌電描記術(shù) 負(fù)跟鞋 腰肌 腹肌 下肢肌 橫斷面研究
Keywords:
electromyography negative heel shoes psoas muscles abdominal muscles muscle of lower limb cross-sectional studies
摘要:
目的:探討不同高度負(fù)跟鞋對(duì)健康成人腰腹肌和下肢肌活動(dòng)的影響。方法:選取45名健康成人作為受試者,男15名、女30名,年齡(34.87±12.79)歲,身高(167.93±7.15)cm,體質(zhì)量(65.87±10.82)kg。采用BTS FreeEMG300無線表面肌電系統(tǒng)測(cè)定受試者依次穿5種不同高度的負(fù)跟鞋(平底鞋、0.5 cm負(fù)跟鞋、1 cm負(fù)跟鞋、1.5 cm負(fù)跟鞋、2 cm負(fù)跟鞋)自然勻速直線行走7個(gè)步行周期時(shí),雙側(cè)腹直肌、腰椎旁肌、脛骨前肌及腓腸肌內(nèi)側(cè)頭的表面肌電信號(hào)均方根值(root mean square,RMS)。結(jié)果:①腹直肌。受試者穿同一高度負(fù)跟鞋行走時(shí),雙側(cè)腹直肌表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義[平底鞋:(15.80,13.59)μV,(17.81,11.70)μV,Z=-5.150,P=0.606; 0.5 cm負(fù)跟鞋:(16.58,11.77)μV,(17.38,10.77)μV,Z=-0.125,P=0.901; 1 cm負(fù)跟鞋:(16.33,11.62)μV,(17.25,12.12)μV,Z=-5.190,P=0.604; 1.5 cm負(fù)跟鞋:(17.50,11.51)μV,(18.09,12.47)μV,Z=-0.023,P=0.981; 2 cm負(fù)跟鞋:(16.80,11.41)μV,(17.64,10.86)μV,Z=-0.164,P=0.870]; 受試者穿不同高度負(fù)跟鞋行走時(shí),同側(cè)腹直肌表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義(左側(cè):χ2=9.191,P=0.056; 右側(cè):χ2=8.645,P=0.071)。②腰椎旁肌。受試者穿同一高度負(fù)跟鞋行走時(shí),雙側(cè)腰椎旁肌表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義[平底鞋:(5.43,5.46)μV,(5.65,3.45)μV,Z=-0.412,P=0.681; 0.5 cm負(fù)跟鞋:(6.04,5.25)μV,(6.53,3.54)μV,Z=-0.198,P=0.843; 1 cm 負(fù)跟鞋:(6.10,5.60)μV,(6.00,4.21)μV,Z=-0.149,P=0.881; 1.5 cm負(fù)跟鞋:(5.85,5.82)μV,(5.83,4.20)μV,Z=-0.222,P=0.824; 2 cm負(fù)跟鞋:(6.60,5.15)μV,(5.73,4.41)μV,Z=-0.052,P=0.958]; 受試者穿不同高度負(fù)跟鞋行走時(shí),同側(cè)腰椎旁肌表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義(左側(cè):χ2=4.996,P=0.288; 右側(cè):χ2=9.156,P=0.057)。③脛骨前肌。受試者穿同一高度負(fù)跟鞋行走時(shí),雙側(cè)脛骨前肌表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義[平底鞋:(51.27,39.27)μV,(49.65,48.12)μV,Z=-0.399,P=0.690; 0.5 cm負(fù)跟鞋:(51.92,42.07)μV,(54.11,46.61)μV,Z=-0.101,P=0.920; 1 cm負(fù)跟鞋:(51.46,39.79)μV,(58.69,33.93)μV,Z=-0.488,P=0.625; 1.5 cm負(fù)跟鞋:(58.53,29.36)μV,(49.16,47.71)μV,Z=-0.480,P=0.631; 2 cm負(fù)跟鞋:(56.26,41.17)μV,(53.54,45.56)μV,Z=-0.246,P=0.806]。受試者穿不同高度負(fù)跟鞋行走時(shí),右側(cè)脛骨前肌表面肌電信號(hào)RMS的差異無統(tǒng)計(jì)學(xué)意義(χ2=5.831,P=0.212)。受試者穿平底鞋、0.5 cm負(fù)跟鞋、1 cm負(fù)跟鞋行走時(shí)的左側(cè)脛骨前肌表面肌電信號(hào)RMS均低于穿2 cm負(fù)跟鞋行走時(shí)的左側(cè)脛骨前肌表面肌電信號(hào)RMS(χ2=-4.133,P=0.000; χ2=-2.867,P=0.041; χ2=-3.000,P=0.027),穿平底鞋行走時(shí)的左側(cè)脛骨前肌表面肌電信號(hào)RMS低于穿1.5 cm負(fù)跟鞋行走時(shí)的左側(cè)脛骨前肌表面肌電信號(hào)RMS(χ2=-3.133,P=0.017)。④腓腸肌內(nèi)側(cè)頭。受試者穿同一高度負(fù)跟鞋行走時(shí),雙側(cè)腓腸肌內(nèi)側(cè)頭表面肌電信號(hào)RMS比較,差異均無統(tǒng)計(jì)學(xué)意義[平底鞋:(50.13,28.83)μV,(51.75,30.80)μV,Z=-0.344,P=0.731; 0.5 cm負(fù)跟鞋:(53.14,28.77)μV,(56.79,32.07)μV,Z=-0.246,P=0.806; 1 cm負(fù)跟鞋:(53.04,27.31)μV,(54.46,26.19)μV,Z=-0.026,P=0.979; 1.5 cm負(fù)跟鞋:(56.17,27.91)μV,(58.90,31.46)μV,Z=-0.064,P=0.949; 2 cm負(fù)跟鞋:(53.36,34.45)μV,(58.19,32.32)μV,Z=-0.563,P=0.573]。受試者穿不同高度負(fù)跟鞋行走時(shí),左側(cè)腓腸肌內(nèi)側(cè)頭表面肌電信號(hào)RMS兩兩比較,差異均無統(tǒng)計(jì)學(xué)意義。受試者穿平底鞋、0.5 cm負(fù)跟鞋、1 cm負(fù)跟鞋行走時(shí)的右側(cè)腓腸肌內(nèi)側(cè)頭表面肌電信號(hào)RMS均低于穿2 cm負(fù)跟鞋行走時(shí)的右側(cè)腓腸肌內(nèi)側(cè)頭表面肌電信號(hào)RMS(χ2=-3.333,P=0.009; χ2=-3.000,P=0.027; χ2=-3.467,P=0.005)。結(jié)論:健康成人穿高度≤2 cm的負(fù)跟鞋短時(shí)間勻速直線行走,不會(huì)影響兩側(cè)腰腹肌和下肢肌收縮的對(duì)稱性; 負(fù)跟鞋高度對(duì)下肢肌活動(dòng)影響較大,對(duì)腰腹肌無明顯影響。
Abstract:
Objective:To investigate the effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults.Methods:Forty-five healthy adults were enrolled,including 15 males and 30 females,with age of(34.87±12.79)years,height of(167.93±7.15)cm,and weight of(65.87±10.82)kg.The surface electromyography(EMG)signals of the bilateral rectus abdominis,paravertebral muscle,tibialis anterior,and medial head of the gastrocnemius muscle were measured using the BTS FreeEMG300 wireless surface EMG system while the participants walked in a straight line at a natural and uniform pace for seven walking cycles in five different heights of negative heel shoes(flat shoes,0.5 cm,1 cm,1.5 cm,and 2 cm negative heel shoes).The root mean square(RMS)of the surface EMG signals was calculated.Results:①Rectus abdominis.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of the surface EMG signals between the bilateral rectus abdominis(flat shoes:(15.80,13.59)vs(17.81,11.70)μV,Z=-5.150,P=0.606; 0.5 cm negative heel shoes:(16.58,11.77)vs(17.38,10.77)μV,Z=-0.125,P=0.901; 1 cm negative heel shoes:(16.33,11.62)vs(17.25,12.12)μV,Z=-5.190,P=0.604; 1.5 cm negative heel shoes:(17.50,11.51)vs(18.09,12.47)μV,Z=-0.023,P=0.981; 2 cm negative heel shoes:(16.80,11.41)vs(17.64,10.86)μV,Z=-0.164,P=0.870).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of the surface EMG signals of the ipsilateral rectus abdominis(left side:χ2=9.191,P=0.056; right side:χ2=8.645,P=0.071).②Paravertebral muscle.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral paravertebral muscle(flat shoes:(5.43,5.46)vs(5.65,3.45)μV,Z=-0.412,P=0.681; 0.5 cm negative heel shoes:(6.04,5.25)vs(6.53,3.54)μV,Z=-0.198,P=0.843; 1 cm negative heel shoes:(6.10,5.60)vs(6.00,4.21)μV,Z=-0.149,P=0.881; 1.5 cm negative heel shoes:(5.85,5.82)vs(5.83,4.20)μV,Z=-0.222,P=0.824; 2 cm negative heel shoes:(6.60,5.15)vs(5.73,4.41)μV,Z=-0.052,P=0.958).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of surface EMG signals of the ipsilateral paravertebral muscle(left side:χ2=4.996,P=0.288; right side:χ2=9.156,P=0.057).③Tibialis anterior.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral tibialis anterior(flat shoes:(51.27,39.27)vs(49.65,48.12)μV,Z=-0.399,P=0.690; 0.5 cm negative heel shoes:(51.92,42.07)vs(54.11,46.61)μV,Z=-0.101,P=0.920; 1 cm negative heel shoes:(51.46,39.79)vs(58.69,33.93)μV,Z=-0.488,P=0.625; 1.5 cm negative heel shoes:(58.53,29.36)vs(49.16,47.71)μV,Z=-0.480,P=0.631; 2 cm negative heel shoes:(56.26,41.17)vs(53.54,45.56)μV,Z=-0.246,P=0.806).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of surface EMG signals of the tibialis anterior on the right side(χ2=5.831,P=0.212).The RMS of the surface EMG signals of the tibialis anterior on the left side when participants walked in flat shoes,0.5 cm negative heel shoes,and 1 cm negative heel shoes was lower than that in 2 cm negative heel shoes(χ2=-4.133,P=0.000; χ2=-2.867,P=0.041; χ2=-3.000,P=0.027).The RMS of the surface EMG signals of the tibialis anterior on the left side when participants walked in flat shoes was lower than that in 1.5 cm negative heel shoes(χ2=-3.133,P=0.017).④Medial head of the gastrocnemius muscle.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral medial head of the gastrocnemius muscle(flat shoes:(50.13,28.83)vs(51.75,30.80)μV,Z=-0.344,P=0.731; 0.5 cm negative heel shoes:(53.14,28.77)vs(56.79,32.07)μV,Z=-0.246,P=0.806; 1 cm negative heel shoes:(53.04,27.31)vs(54.46,26.19)μV,Z=-0.026,P=0.979; 1.5 cm negative heel shoes:(56.17,27.91)vs(58.90,31.46)μV,Z=-0.064,P=0.949; 2 cm negative heel shoes:(53.36,34.45)vs(58.19,32.32)μV,Z=-0.563,P=0.573).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of the surface EMG signals of the medial head of the gastrocnemius muscle on the left side.The RMS of the surface EMG signals of the medial head of the gastrocnemius muscle on the right side when participants walked in flat shoes,0.5 cm negative heel shoes,and 1 cm negative heel shoes was lower than that in 2 cm negative heel shoes(χ2=-3.333,P=0.009; χ2=-3.000,P=0.027; χ2=-3.467,P=0.005).Conclusion:For healthy adults,walking in a straight line at a constant speed in negative heel shoes with a height of≤2 cm does not affect the symmetry of the contraction of the bilateral psoas muscles,abdominal muscles,and muscle of lower limb.The height of the negative heel shoes has a significant impact on the activity of the muscle of lower limb but has no significant effect on the psoas and abdominal muscles.

參考文獻(xiàn)/References:

[1] 樊一婷.負(fù)跟鞋對(duì)人體運(yùn)動(dòng)時(shí)髖、膝、踝的生物力學(xué)影響分析[J].中國皮革,2022,51(5):75-78.
[2] 翟佳濱,任連軍,王祁榮.負(fù)跟鞋足部“穴位”按摩保健的醫(yī)學(xué)實(shí)驗(yàn)與臨床觀察[J].雙足與保健,2019(2):39-40.
[3] PAPAGIANNIS G I,TRIANTAFYLLOU A I,ROUMPELAKIS I M,et al.Methodology of surface electromyography in gait analysis:review of the literature[J].J Med Eng Technol,2019,43(1):59-65.
[4] 李建華,王建.表面肌電圖診斷技術(shù)臨床應(yīng)用[M].杭州:浙江大學(xué)出版社,2015:177-178.
[5] 雷燁,田苗,李俊.鞋履對(duì)人體平衡穩(wěn)定性的影響研究進(jìn)展[J].皮革科學(xué)與工程,2020,30(2):30-37.
[6] 劉凡,曹蕾.表面肌電應(yīng)用的新進(jìn)展[J].體育世界(學(xué)術(shù)版),2019,793(7):149-151.
[7] HAO Z,XIE L,WANG J,et al.Spatial distribution and asymmetry of surface electromyography on lumbar muscles of soldiers with chronic low back pain[J].Pain Res Manag,2020,2020:6946294.
[8] 陳文敏,肖玲玲,李慧慧,等.單側(cè)痛腰椎間盤突出癥的表面肌電信號(hào)特征[J].中國醫(yī)學(xué)物理學(xué)雜志,2017,34(10):1022-1026.
[9] 梁杰,陳述榮,盧惠蘋,等.單側(cè)腰椎間盤突出癥患者椎旁肌表面肌電信號(hào)特征[J].按摩與康復(fù)醫(yī)學(xué),2019,10(23):5-7.
[10] HLAING S S,PUNTUMETAKUL R,KHINE E E,et al.Effects of core stabilization exercise and strengthening exercise on proprioception,balance,muscle thickness and pain related outcomes in patients with subacute nonspecific low back pain:a randomized controlled trial[J].BMC Musculoskelet Disord,2021,22(1):998.
[11] KAWAMA R,IKE A,SOMA A,et al.Side-to-side difference in electromyographic activity of abdominal muscles during asymmetric exercises[J].J Sports Sci Med,2022,21(4):493-503.
[12] 趙苛宇,包天鏈,楊物鵬,等.退行性腰椎管狹窄癥與脊柱-骨盆矢狀位失衡及椎旁肌退變關(guān)系的研究進(jìn)展[J].中醫(yī)正骨,2022,34(1):59-62.
[13] BAI D Y,YUAN Z G,SHAO J J,et al.Unstable shoes for the treatment of lower back pain:a meta-analysis of rando-mized controlled trials[J].Clin Rehabil,2019,33(11):1713-1721.
中醫(yī)正骨2023年5月第35卷第5期 J Trad Chin Orthop Trauma,2023,Vol.35,No.5(總339)
(總340)中醫(yī)正骨2023年5月第35卷第5期 J Trad Chin Orthop Trauma,2023,Vol.35,No.5
[14] 朱瑤佳,霍洪峰.不同姿勢(shì)站立時(shí)人體的平衡能力及足型特征[J].中國組織工程研究,2019,23(15):2345-2349.
[15] QU X,HU X,ZHAO J,et al.The roles of lower-limb joint proprioception in postural control during gait[J].Appl Ergon,2022,99:103635.
[16] CHEN X,QU X.Age-related differences in the relationships between lower-limb joint proprioception and postural balance[J].Hum Factors,2019,61(5):702-711.
[17] FUKUCHI C A,FUKUCHI R K,DUARTE M.Effects of walking speed on gait biomechanics in healthy participants:a systematic review and meta-analysis[J].Syst Rev,2019,8(1):153.
[18] ZHANG L,YAN Y,LIU G,et al.Effect of fatigue on kinematics,kinetics and muscle activities of lower limbs during gait[J].Proc Inst Mech Eng H,2022,236(9):1365-1374.
[19] WHITELEY R,HANSEN C,THOMSON A,et al.Lower limb EMG activation during reduced gravity running on an incline.Speed matters more than hills irrespective of indicated bodyweight[J].Gait Posture,2021,83:52-59.
[20] LATASH M L.Muscle coactivation:definitions,mechanisms,and functions[J].J Neurophysiol,2018,120(1):88-104.
[21] 陳澤華,葉翔凌,陳偉健,等.健康成年人下肢本體感覺與姿勢(shì)穩(wěn)定性的關(guān)系[J].中國組織工程研究,2020,24(29):4692-4696.
[22] 王靜,吳效明.基于表面肌電的步態(tài)分析[J].中國組織工程研究,2012,16(26):4834-4840.
[23] HU Y,SIU S H,MAK J N,et al.Lumbar muscle electromyographic dynamic topography during flexion-extension[J].J Electromyogr Kinesiol,2010,20(2):246-255.

備注/Memo

備注/Memo:
基金項(xiàng)目:二〇二一年度新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院青年培育基金項(xiàng)目(QN-2021-B04) 通訊作者:王文彪 E-mail:[email protected]
更新日期/Last Update: 1900-01-01