84年鼠女哪年财运最旺,857comvvv色九欧美激情|85PO_87国产精品欲av国产av资源

[1]鄧真,王輝昊,王寬,等.C2~T1三維有限元模型的建立和驗(yàn)證[J].中醫(yī)正骨,2016,28(10):1-6.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(10):1-6.
點(diǎn)擊復(fù)制

C2~T1三維有限元模型的建立和驗(yàn)證()
分享到:

《中醫(yī)正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第28卷
期數(shù):
2016年10期
頁碼:
1-6
欄目:
基礎(chǔ)研究
出版日期:
2016-10-20

文章信息/Info

Title:
Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae
作者:
鄧真王輝昊王寬蘭天鷹牛文鑫詹紅生
上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院,上海 201203
Author(s):
DENG ZhenWANG HuihaoWANG KuanLAN TianyingNIU WenxinZHAN Hongsheng
Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China
關(guān)鍵詞:
頸椎 有限元分析 活動度 應(yīng)力分布
Keywords:
cervical vertebrae finite element analysis range of motion stress distribution
摘要:
目的:建立人體C2~T1三維有限元模型并進(jìn)行驗(yàn)證。方法:采集1位健康男性志愿者的頸部CT圖像,依次采用Mimics 17.0醫(yī)學(xué)圖像處理軟件、Geomagic 12.0逆向工程軟件及Abaqus 6.13有限元分析軟件建立C2~T1三維有限元模型。約束T1下終板所有節(jié)點(diǎn)的全部6個自由度作為邊界條件,在齒狀突頂點(diǎn)上2 mm處建立參考點(diǎn),將其與C2齒狀突所有單元節(jié)點(diǎn)耦合。對參考點(diǎn)分別施加±0.5 Nm、±1 Nm、±1.5 Nm、±2 Nm扭矩,模擬頸椎前屈、后伸、左右旋轉(zhuǎn)、左右側(cè)彎6種運(yùn)動狀態(tài),計(jì)算不同條件下頸椎各節(jié)段活動度,與以往離體實(shí)驗(yàn)和有限元實(shí)驗(yàn)結(jié)果進(jìn)行比較,同時觀察各種運(yùn)動狀態(tài)下模型的應(yīng)力分布情況。結(jié)果:建立的三維有限元模型模擬了C2~T1共7個椎體、6個椎間盤、5種韌帶、6組關(guān)節(jié)軟骨及上下終板,涉及60 459個單元、128 473個節(jié)點(diǎn)。模型在前屈、后伸、左右旋轉(zhuǎn)、左右側(cè)彎6種狀態(tài)下的活動度與文獻(xiàn)中的研究數(shù)據(jù)基本一致,應(yīng)力分布與正常頸椎活動時的情況一致。結(jié)論:本研究建立的C2~T1三維有限元模型較為真實(shí)地模擬了正常頸椎的幾何形態(tài)和材料屬性,能夠較為準(zhǔn)確地反映正常頸椎的生物力學(xué)特性。
Abstract:
Objective:To build and validate a three-dimensional finite element(FE)model of human C2-T1 vertebrae.Methods:The neck CT image of one healthy male volunteer was collected,then the C2-T1 three-dimensional FE model was built by using Mimics 17.0 medical image processing software,Geomagic 12.0 reverse engineering software and Abaqus 6.13 finite element analysis software in turn.Six degrees of freedom of all nodes in inferior endplate of T1 vertebrae were restrained and it was used as boundary condition.The reference point was built at 2 mm above the culminated point of odontoid process and was coupled with all unit nodes of C2 odontoid process.The torques(+/-0.5,+/-1,+/-1.5,and +/-2 Nm,respectively)were applied to the reference point to simulate 6 kinds of motion of cervical vertebra,included anteflexion,backward extension,left-right rotation and left-right lateral flexion.The range of motion(ROM)of each segment of cervical vertebrae in different states of motion were calculated,and then the results were compared with those results of previous in vitro experiment and finite element experiment.Meanwhile,the stress distribution of the model in each state of motion was observed.Results:Seven vertebraes,six intervertebral disks,five kinds of ligaments and six groups of articular cartilage and endplates of C2-T1 were simulated by the three-dimensional FE model,which included 60 459 units and 128 473 nodes.The ROM of the model in 6 kinds of states of motion,including anteflexion,backward extension,left-right rotation and left-right lateral flexion,were basically consistent with the literature data.The stress distribution of the model was consistent with that of cervical spine in normal activities.Conclusion:The three dimensional FE model of C2-T1 vertebrae that we build in this study can literally simulate the geometric configuration and material attribute of normal cervical vertebrae and accurately reflect the biomechanical characteristics of normal cervical vertebrae.

參考文獻(xiàn)/References:

[1] 柯尊華,王靜怡.頸椎病流行病學(xué)及發(fā)病機(jī)理研究進(jìn)展[J].頸腰痛雜志,2014,35(1):62-64.
[2] 李韻,賀西京.有限元分析在脊柱生物力學(xué)領(lǐng)域的應(yīng)用[J].生物醫(yī)學(xué)工程學(xué)雜志,2001,18(2):288-289.
[3] 原芳,薛清華,劉偉強(qiáng).有限元法在脊柱生物力學(xué)應(yīng)用中的新進(jìn)展[J].醫(yī)用生物力學(xué),2013,28(5):585-590.
[4] Bozic KJ,Keyak JH,Skinner HB,et al.Three-dimensional finite element modeling of a cervical vertebra:an investigation of burst fracture mechanism[J].J Spinal Disord,1994,7(2):102-110.
[5] Yoganandan N,Kumaresan SC,Voo LM,et al.Finite element modeling of the C4-C6 cervical spine unit[J].Med Eng Phys,1996,18(7):569-574.
[6] Yoganandan N,Kumaresan S,Pintar FA.Biomechanics of the cervical spine Part 2.Cervical spine soft tissue responses and biomechanical modeling[J].Clin Biomech(Bristol, Avon),2001,16(1):1-27.
[7] Carlesso LC,Macdermid JC,Santaguida P.Determining adverse events in patients with neck pain receiving orthopaedic manual physiotherapy:a pilot and feasibility study[J].Physiother Can,2013,65(3):255-265.
[8] Hurwitz EL,Carragee EJ,Van Der Velde G,et al.Treatment of neck pain: Noninvasive interventions - Results of the bone and joint decade 2000-2010 task force on neck pain and its associated disorders[J].Spine(Phila Pa 1976),2008,33(4, S):S123-S152.
[9] Yoganandan N,Kumaresan S,Pintar FA.Geometric and mechanical properties of human cervical spine ligaments[J].J Biomech Eng,2000,122(6):623-629.
[10] Panjabi MM,Oxland T,Takata K,et al.Articular facets of the human spine.Quantitative three-dimensional anatomy[J].Spine(Phila Pa 1976),1993,18(10):1298-1310.
[11] Goel VK,Clausen JD.Prediction of load sharing among spinal components of a C5-C6 motion segment using finite element approach[J].Spine(Phila Pa 1976),1998,23(6):684-691.
[12] Zhang QH,Teo EC,Ng HW,et al.Finite element analysis of moment-rotation relationships for human cervical spine[J].J Biomech,2006,39(1):189-193.
[13] Panzer MB,Fice JB,Cronin DS.Cervical spine response in frontal crash[J].Med Eng Phys,2011,33(9):1147-1159.
[14] Wheeldon JA,Pintar FA,Knowles S,et al.Experimental flexion/extension data corridors for validation of finite element models of the young,normal cervical spine[J].J Biomech,2006,39(2):375-380.
[15] Nightingale RW,Carol Chancey V,Ottaviano D,et al.Flexion and extension structural properties and strengths for male cervical spine segments[J].J Biomech,2007,40(3):535-542.
[16] Nightingale RW,Winkelstein BA,Knaub KE,et al.Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension[J].J Biomech,2002,35(6):725-732.
[17] Panjabi MM,Crisco JJ,Vasavada A,et al.Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves[J].Spine(Phila Pa 1976),2001,26(24):2692-2700.
[18] Moroney SP,Schultz AB,Miller JA,et al.Load-displacement properties of lower cervical spine motion segments[J].J Biomech,1988,21(9):769-779.
[19] Lysell E.Motion in the cervical spine.An experimental study on autopsy specimens[J].Acta Orthop Scand, 1969:40(sup-123):1-61.
[20] Kallemeyn N,Gandhi A,Kode S,et al.Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data[J].Med Eng Phys,2010,32(5):482-489.
[21] Hussain M,Natarajan RN,Fayyazi AH,et al.Screw angulation affects bone-screw stresses and bone graft load sharing in anterior cervical corpectomy fusion with a rigid screw-plate construct:a finite element model study[J].Spine J,2009,9(12):1016-1023.
[22] Del Palomar AP,Calvo B,Doblare M.An accurate finite element model of the cervical spine under quasi-static loading[J].J Biomech,2008,41(3):523-531.
[23] Erbulut DU,Zafarparandeh I,Lazoglu I,et al.Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability[J].Med Eng Phys,2014,36(7):915-921.
[24] Panjabi MM,Nibu K,Cholewicki J.Whiplash injuries and the potential for mechanical instability[J].Eur Spine J,1998,7(6):484-492.
[25] Goel VK,Clark CR,Gallaes K,et al.Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex[J].J Biomech,1988,21(8):673-680.
[26] Stemper BD,Yoganandan N,Pintar FA.Effects of abnormal posture on capsular ligament elongations in a computational model subjected to whiplash loading[J].J Biomech,2005,38(6):1313-1323.
[27] 張宇宸,李頡,牛文鑫,等.人工頸椎間盤置換對多節(jié)段下頸椎活動影響的三維有限元分析[J].中華醫(yī)學(xué)雜志,2008,88(17):1214-1216.
[28] 王輝昊,沈知彼,鄧真,等.人體全頸椎及椎動脈流固耦合模型的構(gòu)建[J].浙江大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2015,44(2):131-137.

相似文獻(xiàn)/References:

[1]劉建航,陳道云,黃勇,等.手法治療頸源性頭痛臨床療效的Meta分析[J].中醫(yī)正骨,2016,28(01):28.
 LIU Jianhang,CHEN Daoyun,HUANG Yong,et al.A meta analysis on the clinical curative effect of manipulation on cervical headache[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(10):28.
[2]梅偉,高曉群.前路復(fù)位椎間植骨融合內(nèi)固定術(shù)治療 單節(jié)段下頸椎骨折脫位合并關(guān)節(jié)突交鎖[J].中醫(yī)正骨,2016,28(03):42.
[3]孫蘭芬,王龍強(qiáng),劉潤宏,等.頸椎骨折脫位合并脊髓損傷截癱患者的圍手術(shù)期護(hù)理[J].中醫(yī)正骨,2016,28(03):79.
[4]孫旗,吳齊飛,鄭晨穎,等.頸椎前路手術(shù)后咽痛的防治進(jìn)展[J].中醫(yī)正骨,2016,28(05):22.
[5]畢 鍇.頸椎手法常見高危禁忌證的X線診斷[J].中醫(yī)正骨,2016,28(08):73.
[6]葉宜穎,高景華,高春雨.有限元分析法在脊柱推拿手法生物力學(xué)研究中的應(yīng)用[J].中醫(yī)正骨,2016,28(10):29.
[7]楊鵬,魏秋實(shí),陳鎮(zhèn)秋,等.基于多模態(tài)圖像配準(zhǔn)技術(shù)構(gòu)建半骨盆全髖關(guān)節(jié)有限元模型[J].中醫(yī)正骨,2017,29(05):1.
 YANG Peng,WEI Qiushi,CHEN Zhenqiu,et al.Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(10):1.
[8]陳海龍,鄭九琴,朱文瀟,等.常規(guī)顱骨牽引和全身麻醉下手法復(fù)位在下頸椎脫位前路減壓植骨融合內(nèi)固定術(shù)中的應(yīng)用[J].中醫(yī)正骨,2017,29(07):74.
[9]鄧真,王輝昊,王寬,等.石氏傷科頸椎定位旋轉(zhuǎn)扳法的動力學(xué)參數(shù)在體測量[J].中醫(yī)正骨,2018,30(03):17.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.In vivo measurement of kinetic parameters of cervical fixed-position rotary pulling manipulation of Shi's department of traumatology[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(10):17.
[10]王浩,陳佳麗,錢桑.范炳華教授診治3種常見頸椎生理結(jié)構(gòu)異常的經(jīng)驗(yàn)[J].中醫(yī)正骨,2018,30(03):56.
[11]沈知彼,王輝昊,王寬,等.頸椎定位旋轉(zhuǎn)扳法對不同曲度頸椎內(nèi)部結(jié)構(gòu)應(yīng)力的影響[J].中醫(yī)正骨,2018,30(03):8.
 SHEN Zhibi,WANG Huihao,WANG Kuan,et al.Effect of cervical fixed-position rotary pulling manipulation on internal structure stresses of cervical vertebrae with different curvature[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(10):8.
[12]張明才,陳博,石印玉,等.頸椎單節(jié)椎體平移錯縫對頸椎主要結(jié)構(gòu)應(yīng)力影響的有限元分析[J].中醫(yī)正骨,2020,32(04):1.
 ZHANG Mingcai,CHEN Bo,SHI Yinyu,et al.Influence of translational dislocation of single-segment cervical vertebral body on the stresses of main structures of cervical vertebra:a finite element analysis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(10):1.
[13]林福,付坤飛,全仁夫.有限元法在頸椎生物力學(xué)研究中的應(yīng)用進(jìn)展[J].中醫(yī)正骨,2021,33(06):60.

備注/Memo

備注/Memo:
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(81473702,81503596); “中醫(yī)骨傷科學(xué)”國家重點(diǎn)學(xué)科項(xiàng)目(100508); 上海市中醫(yī)藥領(lǐng)軍人才建設(shè)項(xiàng)目(2012-63-15); 上海領(lǐng)軍人才項(xiàng)目(041); “海派中醫(yī)流派傳承研究基地”項(xiàng)目(ZYSNXD-CC-HPGC-JD-001,ZY3-CCCX-1-1003); 上海市中醫(yī)藥事業(yè)發(fā)展三年行動計(jì)劃項(xiàng)目(ZYSNXD-CC-ZDYJ047)
通訊作者:詹紅生 E-mail:[email protected]
更新日期/Last Update: 2016-10-20